Advanced Search
Volume 41 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
Yan GUO, Xiaoxiang SONG, Ning LI, Peng QIAN. Missing Data Prediction Based on Kronecker Compressing Sensing in Multivariable Time Series[J]. Journal of Electronics & Information Technology, 2019, 41(4): 858-864. doi: 10.11999/JEIT180541
Citation: Yan GUO, Xiaoxiang SONG, Ning LI, Peng QIAN. Missing Data Prediction Based on Kronecker Compressing Sensing in Multivariable Time Series[J]. Journal of Electronics & Information Technology, 2019, 41(4): 858-864. doi: 10.11999/JEIT180541

Missing Data Prediction Based on Kronecker Compressing Sensing in Multivariable Time Series

doi: 10.11999/JEIT180541
Funds:  The National Natural Science Foundation of China (61571463, 61371124, 61472445), The Jiangsu Province Natural Science Foundation (BK20171401)
  • Received Date: 2018-06-01
  • Rev Recd Date: 2018-10-29
  • Available Online: 2018-11-19
  • Publish Date: 2019-04-01
  • In view of the problem that the existing methods are not applicable or are only feasible to the case where only a low ratio of data are missing in multivariable time series, a missing data prediction algorithm is proposed based on Kronecker Compressed Sensing (KCS) theory. Firstly, the sparse representation basis is designed to largely utilize both the temporal smoothness characteristic of time series and potential correlation between multiple time series. In this way, the missing data prediction problem is modeled into the problem of sparse vector recovery. In the solution part of the model, according to the location of missing data, the measurement matrix is designed suitable for the current application scenario and low correlation with the sparse representation basis. Then, the validity of the model is verified from two aspects: Whether the sparse representation vector is sufficiently sparse and the sensing matrix satisfies the restricted isometry property. Simulation results show that the proposed algorithm has good performance in the case where a high ratio of data are missing.

  • loading
  • SOWMYA R and SUNEETHA K R. Data mining with big data[C]. International Conference on Intelligent Systems and Control, Coimbatore, India, 2017: 246–250. doi: 10.1109/ISCO.2017.7855990.
    JAQUES N, TAYLOR S, SANO A, et al. Multimodal autoencoder: A deep learning approach to filling in missing sensor data and enabling better mood prediction[C]. International Conference on Affective Computing & Intelligent Interaction, San Antonio, USA, 2017: 202–208. doi: 10.1109/ACII.2017.8273601.
    BALOUJI E, SALOR Q, and ERMIS M. Exponential smoothing of multiple reference frame components with GPUs for real-time detection of time-varying harmonics and interharmonics of EAF currents[C]. IEEE Industry Applications Society Meeting, Cincinatti, USA, 2017: 1–8. doi: 10.1109/IAS.2017.8101815.
    KOZERA R and WILKOLAZKA M. Natural spline interpolation and exponential parameterization for length estimation of curves[C]. International Conference of Numerical Analysis & Applied Mathematics, Rhodes, Greece, 2017: 1–140.
    LAO Wenchao, WANG Ying, CHEN Peng, et al. Time series forecasting via weighted combination of trend and seasonality respectively with linearly declining increments and multiple sine functions[C]. International Joint Conference on Neural Networks, Beijing, China, 2014: 832–837. doi: 10.1109/IJCNN.2014.6889609.
    LIPPI M, BERTINI M, and FRASCONI P. Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning[J]. IEEE Transactions on Intelligent, Transportation, System, 2013, 14(2): 871–882 doi: 10.1109/TITS.2013.2247040
    STRAUMAN A S, BIANCHI F M, and MIKALSEN K Ø. Classification of postoperative surgical site infections from blood measurements with missing data using recurrent neural networks[C]. International Conference on Biomedical & Health Informatics, Las Vegas, USA, 2018: 307–310. doi: 10.1109/BHI.2018.8333430.
    LI Li, LI Yuebiao, and LI Zhiheng. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence[J]. Transportation Research Part C, 2013, 34(9): 108–120.
    LI Yuebiao, LI Zhiheng, LI Li, et al. Comparison on PPCA, KPPCA and MPPCA based missing data imputing for traffic flow[C]. Proceedings of IEEE Conference on Intelligent Transportation System, Wuhan, China, 2013: 1535–1540.
    SHI Weiwei, ZHU Yongxin, and HUANG Tian. Effective prediction of missing data on apache spark over multivariable time series[J]. IEEE Transactions on Big Data, 2018 doi: 10.1109/TBDATA.2017.2719703
    HADI A and WAHIDAH I. Delay estimation using compressive sensing on WSN IEEE 802.15.4[C]. International Conference on Control, Electronics, Renewable Energy and Communications, Bandung, Indonesia, 2017: 192–197. doi: 10.1109/ICCEREC.2016.7814975.
    DUARTEAND M F and BARANIUK R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494–504 doi: 10.1109/TIP.2011.2165289
    ZHOU Haifei, TAN Liangsheng, GE Fei, et al. Traffic matrix estimation: Advanced-Tomogravity method based on a precise gravity model[J]. International Journal of Communication Systems, 2015, 28(10): 1709–1728 doi: 10.1002/dac.2787
    CHEN S S, DONOHO D L, and SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129–159 doi: 10.1137/S003614450037906X
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666 doi: 10.1109/TIT.2007.909108
    CHARTRAND R and YIN W. Iteratively reweighted algorithms for compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 2008: 3869–3872. doi: 10.1109/ICASSP.2008.4518498.
    AL-SHOUKAIRI M, SCHNITER P, and RAO B D. A GAMP based low complexity sparse Bayesian learning algorithm[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 294–308 doi: 10.1109/TSP.2017.2764855
    SAMUEL M. Intel lab data[OL]. http://db.csail.mit.edu, 2016.
    FONOLLOSA J, SHEIK S, HUERTA R, et al. Reservoir computing compensates slow response of chemo sensor arrays exposed to fast varying gas concentrations in continuous monitoring[J]. Sensors & Actuators B Chemical, 2015, 215: 618–629.
    Tropical Atmosphere Ocean. NOAA/Pacific Marine Environmental Laboratory[OL]. http://www.pmel.noaa.gov/tao/proj_over/proj_over.html, 2016.
    WU Xiaopei and LIU Mingyan. In-situ soil moisture sensing: Measurement scheduling and estimation using compressive sensing[C]. ACM/IEEE, International Conference on Information Processing in Sensor Networks, Beijing, China, 2012: 1–11. doi: 10.1109/IPSN.2012.6920949.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (2096) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return