Advanced Search
Volume 41 Issue 5
Apr.  2019
Turn off MathJax
Article Contents
Yingkun HUANG, Weidong JIN, Peng GE, Bing LI. Radar Emitter Signal Identification Based on Multi-scale Information Entropy[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1084-1091. doi: 10.11999/JEIT180535
Citation: Yingkun HUANG, Weidong JIN, Peng GE, Bing LI. Radar Emitter Signal Identification Based on Multi-scale Information Entropy[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1084-1091. doi: 10.11999/JEIT180535

Radar Emitter Signal Identification Based on Multi-scale Information Entropy

doi: 10.11999/JEIT180535
Funds:  The National Key Research and Development Program (2016YFB1200401-102F), The Fundamental Research Funds for the Central Universities (2682017CX046)
  • Received Date: 2018-05-30
  • Rev Recd Date: 2019-02-25
  • Available Online: 2019-03-04
  • Publish Date: 2019-05-01
  • With the increasing complexity of radar signals, it is more and more difficult to extract features of the real sequences, but when they are transformed to a symbol sequence, it is usually easier to mine the effective feature parameters. Therefore, a radar signal recognition method based on Multi-Scale Information Entropy (MSIE) is proposed. Firstly, the radar signal is transformed into symbolic sequence by Symbolic Aggregate approXimation (SAX) algorithm under different character number scales. Then, the information entropy of each symbol sequence is combined to form the MSIE feature vector. Finally, the k-Nearest Neighbor (k-NN) is used as a classifier to realize the classification and identification of radar signals. The simulation results of 6 typical radar signals show that using the proposed method the correct recognition rate of different radar signals is greater than 90% when Signal to Noise Ratio (SNR) is 5 dB, and better performance can be obtaned conpared with the traditional identification method based on complexity characteristics (box-dimension and sparseness).

  • loading
  • WILEY R G. ELINT: The Interception and Analysis of Radar Signals[M]. Norwood, USA: Artech House, 2006: 1–15.
    韩俊, 何明浩, 朱振波, 等. 基于复杂度特征的未知雷达辐射源信号分选[J]. 电子与信息学报, 2009, 31(11): 2552–2556.

    HAN Jun, HE Minghao, ZHU Zhenbo, et al. Sorting unknown radar emitter signal based on the complexity characteristics[J]. Journal of Electronics &Information Technology, 2009, 31(11): 2552–2556.
    曲志昱, 毛校洁, 侯长波. 基于奇异值熵和分形维数的雷达信号识别[J]. 系统工程与电子技术, 2018, 40(2): 303–307. doi: 10.3969/j.issn.1001-506X.2018.02.10

    QU Zhiyu, MAO Xiaojie, and HOU Changbo. Radar signal recognition based on singular value entropy and fractal dimension[J]. Systems Engineering and Electronics, 2018, 40(2): 303–307. doi: 10.3969/j.issn.1001-506X.2018.02.10
    LI Jingchao and YING Yulong. Radar signal recognition algorithm based on entropy theory[C]. Proceedings of the 2nd International Conference on Systems and Informatics, Shanghai, China, 2014: 718–723.
    GUO Yuanyuan and ZHANG Xudong. Radar signal classification based on cascade of STFT, PCA and naïve Bayes[C]. Proceedings of the 7th International Conference on Intelligent Systems, Modelling and Simulation, Bangkok, Thailand, 2016: 191–196.
    DUDCZYK J. A method of feature selection in the aspect of specific identification of radar signals[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2017, 65(1): 113–119. doi: 10.1515/bpasts-2017-0014
    GUO Qiang, NAN Polong, and WAN Jian. Signal classification method based on data mining for multi-mode radar[J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 1010–1017. doi: 10.21629/JSEE.2016.05.09
    KONOPKO K, GRISHIN Y P, and JAŃCZAK D. Radar signal recognition based on time-frequency representations and multidimensional probability density function estimator[C]. Proceedings of 2015 Signal Processing Symposium, Dębe, Poland, 2015: 1–6.
    陈韬伟, 金炜东. 雷达辐射源信号符号化脉内特征提取方法[J]. 数据采集与处理, 2008, 23(5): 521–526. doi: 10.3969/j.issn.1004-9037.2008.05.004

    CHEN Taowei and JIN Weidong. Intra-pulse feature extraction of radar emitter signals based on symbolization method[J]. Journal of Data Acquisition &Processing, 2008, 23(5): 521–526. doi: 10.3969/j.issn.1004-9037.2008.05.004
    CHEN Taowei and JIN Weidong. Feature extraction of radar emitter signals based on symbolic time series analysis[C]. Proceedings of 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2007: 1277–1282.
    CHEN Taowei, LIU Zugen, LI Jie, et al. Symbolic time series analysis for measuring complexity in radar emitter signals[C]. Proceedings of the 7th International Congress on Image and Signal Processing, Dalian, China, 2014: 918–922.
    LIN J, KEOGH E, WEI Li, et al. Experiencing SAX: A novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 107–144. doi: 10.1007/s10618-007-0064-z
    SONG Wei, WANG Zhiguang, ZHANG Fan, et al. Empirical study of symbolic aggregate approximation for time series classification[J]. Intelligent Data Analysis, 2017, 21(1): 135–150. doi: 10.3233/IDA-150351
    向馗, 蒋静坪. 时间序列的符号化方法研究[J]. 模式识别与人工智能, 2007, 20(2): 154–161. doi: 10.3969/j.issn.1003-6059.2007.02.003

    XIANG Kui and JIANG Jingping. Study on symbolization analysis of time series[J]. Pattern Recognition and Artificial Intelligence, 2007, 20(2): 154–161. doi: 10.3969/j.issn.1003-6059.2007.02.003
    KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2001, 3(3): 263–286. doi: 10.1007/PL00011669
    余志斌. 基于脉内特征的雷达辐射源信号识别研究[D]. [博士论文], 西南交通大学, 2010: 1–56.

    YU Zhibin. Study on radar emitter signal identification based on intra-pulse features[D]. [Ph.D. dissertation], Southwest Jiaotong University, 2010: 1–56.
    VAN DER MAATEN A and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008(9): 2579–2605.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (2938) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return