Advanced Search
Volume 41 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
Dongping YU, Yan GUO, Ning LI, Sixing YANG, Xiaoxiang SONG. Dictionary Refinement Method for Compressive Sensing Based Multi-target Device-free Localization[J]. Journal of Electronics & Information Technology, 2019, 41(4): 865-871. doi: 10.11999/JEIT180531
Citation: Dongping YU, Yan GUO, Ning LI, Sixing YANG, Xiaoxiang SONG. Dictionary Refinement Method for Compressive Sensing Based Multi-target Device-free Localization[J]. Journal of Electronics & Information Technology, 2019, 41(4): 865-871. doi: 10.11999/JEIT180531

Dictionary Refinement Method for Compressive Sensing Based Multi-target Device-free Localization

doi: 10.11999/JEIT180531
Funds:  The National Natural Science Foundation of China (61871400, 61571463), The Natural Science Foundation of Jiangsu Province (BK20171401)
  • Received Date: 2018-05-30
  • Rev Recd Date: 2018-11-06
  • Available Online: 2018-11-16
  • Publish Date: 2019-04-01
  • In order to solve the dictionary mismatch problem of Compressive Sensing (CS) based multi-target Device-Free Localization (DFL) under the wireless localization environments, a Variational Expectation Maximization (VEM) based dictionary refinement method is proposed. Firstly, this method builds the dictionary based on the saddle surface model, and models the environment-related dictionary parameters as tunable parameters. Then, a two-layer hierarchical Gaussian prior model is imposed on the location vector to induce its sparsity. Finally, the VEM algorithm is adopted to estimate the posteriors of hidden variables and optimize the environment-related dictionary parameter, thus the estimation of target locations and dictionary refinement can be realized jointly. Compared with the conventional CS based multi-target DFL schemes, the simulation results demonstrate that the performance of the proposed algorithm is especially excellent in changing wireless localization environments.

  • loading
  • WANG Jie, GAO Qinhua, PAN Miao, et al. Device-free wireless sensing: Challenges, opportunities, and applications[J]. IEEE Network, 2018, 32(2): 132–137 doi: 10.1109/MNET.2017.1700133
    YOUSSEF M, MAH M, and AGRAWALA A. Challenges: Device-free passive localization for wireless environments[C]. Proceedings of the ACM MobiCom’07, Montreal, 2007: 222–229. doi: 10.1145/1287853.1287880.
    ZHANG Dian, MA Jian, CHEN Quanbin, et al. An RF-based system for tracking transceiver-free objects[C]. Proceeding of the 5th IEEE International Conference on Pervasive Computing and Communications (PerCom’07), White Plains, 2007: 135–144. doi: 10.1109/percom.2007.8.
    WANG Ju, CHEN Xiaojiang, FANG Dingyi, et al. Transferring compressive-sensing-based device-free localization across target diversity[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2397–2409 doi: 10.1109/TIE.2014.2360140
    KE Wei, WANG Tingting, and SHAO Jianhua. CS-based device-free localization in the presence of model errors[C]. Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016: 4443–4447. doi: 10.1109/ICASSP.2016.7472517.
    WANG Ju, FANG Dingyi, and YANG Zhe. E-HIPA: An energy-efficient framework for high-precision multi-target adaptive device-free localization[J]. IEEE Transactions on Mobile Computing, 2017, 16(3): 716–729 doi: 10.1109/TMC.2016.2567396
    TALAMPAS M and LOW K. A geometric filter algorithm for robust device-free localization in wireless networks[J]. IEEE Transactions on Industrial Informatics, 2016, 12(5): 1670–1678 doi: 10.1109/TII.2015.2433211
    LEI Qian, ZHANG Haijian, SUN Hong, et al. Fingerprint-based device-free localization in changing environments using enhanced channel selection and logistic regression[J]. IEEE Access, 2018, 6: 2569–2577 doi: 10.1109/ACCESS.2017.2784387
    CHEN Xi, MA Chen, ALLEGUE M, et al. Taming the inconsistency of Wi-Fi fingerprints for device-free passive indoor localization[C]. Proceeding of the IEEE INFOCOM 2017, Atlanta, 2017: 1–9. doi: 10.1109/INFOCOM.2017.8057185.
    WILSON J and PATWARI N. Ratio tomographic imaging with wireless networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(5): 621–632 doi: 10.1109/TMC.2009.174
    WANG Qinghua, YIGITLER H, JANTTI R, et al. Localizing multiple objects using radio tomographic imaging technology[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3641–3656 doi: 10.1109/TVT.2015.2432038
    DONOHO D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306 doi: 10.1109/TIT.2006.871582
    WANG Ju, FANG Dingyi, CHEN Xiaojing, et al. LCS: Compressive sensing based device-free localization for multiple targets in sensor networks[C]. Proceeding of the IEEE INFOCOM 2013, Turin, 2013: 14–19. doi: 10.1109/INFCOM.2013.6566752.
    SONG Chaobing and XIA Shutao. Sparse signal recovery by minimization under restricted isometry property[J]. IEEE Signal Processing Letters, 2014, 21(9): 1154–1158 doi: 10.1109/LSP.2014.2323238
    WANG Jie, GAO Qinhua, PAN Miao, et al. Towards accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665–6677 doi: 10.1109/TVT.2015.2476495
    SEEGER M and WIPF D. Variational Bayesian inference techniques[J]. IEEE Signal Processing Magazine, 2010, 27(6): 81–91 doi: 10.1109/MSP.2010.938082
    CANDES E and WAKIN M. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30 doi: 10.1109/MSP.2007.914731
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356 doi: 10.1109/TSP.2007.914345
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (2086) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return