Advanced Search
Volume 41 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
Yan HU, Zili SHAN, Feng GAO. Candidate Region Extraction Method for Multi-satellite and Multi-resolution SAR Ships[J]. Journal of Electronics & Information Technology, 2019, 41(4): 770-778. doi: 10.11999/JEIT180525
Citation: Yan HU, Zili SHAN, Feng GAO. Candidate Region Extraction Method for Multi-satellite and Multi-resolution SAR Ships[J]. Journal of Electronics & Information Technology, 2019, 41(4): 770-778. doi: 10.11999/JEIT180525

Candidate Region Extraction Method for Multi-satellite and Multi-resolution SAR Ships

doi: 10.11999/JEIT180525
Funds:  The Open Foundation of CETC Key Laboratory of Aerospace Information Applications (EX166290025)
  • Received Date: 2018-05-29
  • Rev Recd Date: 2018-12-18
  • Available Online: 2018-12-26
  • Publish Date: 2019-04-01
  • The traditional methods based on CFAR and Kernel Density Estimation (KDE) for SAR ship candidate region extraction has the following defects: The choice of false alarm rate of CFAR depends on artificial experience; CFAR only models the sea clutter distribution, which poses a certain risk of missing detection to the target; When KDE is used to filter strong sea clutter, the threshold must be selected by artificial experience. These defects make the traditional method unable to adapt to complex scene, such as multi-satellite and multi-resolution. A candidate region extraction method for multi-satellite and multi-resolution SAR ships is proposed. In view of the defects of CFAR, an iterative method of mean dichotomy is proposed to approximate the target and calculate the segmentation threshold. The calculation efficiency of this method is more than 10 times higher than that of CFAR while overcoming the defects of CFAR; In view of the defects of KDE, block KDE combined with large threshold is used to filter strong sea clutter, and then seed point growth algorithm is used to reconstruct target. Because the large threshold has enough thresholds, the method can adapt to more complex scenarios. Experiments show that the proposed method has the advantages of no missed detection, self-adaptive threshold, high computational efficiency, and low false alarm rate. It has excellent multi-satellite and multi-resolution SAR ship candidate region extraction capability.

  • loading
  • 陈琪, 王娜, 陆军, 等. SAR图像港口区域舰船检测新方法[J]. 电子与信息学报, 2011, 33(9): 2132–2137 doi: 10.3724/SP.J.1146.2011.00018

    CHEN Qi, WANG Na, LU Jun, et al. A new method for ship detection in harbor region of SAR images[J]. Journal of Electronics &Information Technology, 2011, 33(9): 2132–2137 doi: 10.3724/SP.J.1146.2011.00018
    文伟, 曹雪菲, 张学峰. 一种基于多极化散射机理的极化SAR图像舰船目标检测方法[J]. 电子与信息学报, 2017, 39(1): 103–109 doi: 10.11999/JEIT160204

    WEN Wei, CAO Xuefei, and ZHANG Xuefeng. PolSAR ship detection method based on multiple polarimetric scattering mechanisms[J]. Journal of Electronics &Information Technology, 2017, 39(1): 103–109 doi: 10.11999/JEIT160204
    艾加秋, 齐向阳, 禹卫东. 改进的SAR图像双参数CFAR舰船检测算法[J]. 电子与信息学报, 2009, 31(12): 2881–2885 doi: 10.3724/SP.J.1146.2008.01707

    AI Jiaqiu, QI Xiangyang, and YU Weidong. Improved two parameter CFAR ship detection algorithm in SAR images[J]. Journal of Electronics &Information Technology, 2009, 31(12): 2881–2885 doi: 10.3724/SP.J.1146.2008.01707
    胡炎, 单子力, 高峰. 基于Faster-RCNN和多分辨率SAR的海上舰船目标检测[J]. 无线电工程, 2018, 48(2): 96–100 doi: 10.3969/j.issn.1003-3106.2018.02.04

    HU Yan, SHAN Zili, and GAO Feng. Ship detection based on faster-RCNN and multi-resolution SAR[J]. Radio Engineering, 2018, 48(2): 96–100 doi: 10.3969/j.issn.1003-3106.2018.02.04
    徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148 doi: 10.12000/JR16130

    XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148 doi: 10.12000/JR16130
    KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]. 2017 International Workshop on Remote Sensing with Intelligent, Shanghai, China, 2017: 1–4. doi: 10.1109/RSIP.2017.7958815.
    WANG Chonglei, BI Fukun, ZHANG Weiping, et al. An intensity-space domain CFAR method for ship detection in HR SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4): 529–533 doi: 10.1109/LGRS.2017.2654450
    LZZO A, LIGUORI M, CLEMENTE C, et al. Multimodel CFAR detection in foliage penetrating SAR images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1769–1780 doi: 10.1109/TAES.2017.2672018
    熊开玲, 彭俊杰, 杨晓飞, 等. 基于核密度估计的K-means聚类优化[J]. 计算机技术与发展, 2017, 27(2): 1–5 doi: 10.3969/j.issn.1673-629X.2017.02.001

    XIONG Kailing, PENG Junjie, YANG Xiaofei, et al. K-means clustering optimization based on kernel density estimation[J]. Computer Technology and Development, 2017, 27(2): 1–5 doi: 10.3969/j.issn.1673-629X.2017.02.001
    冷祥光, 计科峰, 宋海波, 等. 影响星载SAR舰船检测的关键因素[J]. 遥感信息, 2016, 31(1): 3–12 doi: 10.3969/j.issn.1000-3177.2016.01.001

    LENG Xiangguang, JI Kefeng, SONG Haibo, et al. Key factors influencing ship detection in spaceborne SAR imagery[J]. Remote Sensing Information, 2016, 31(1): 3–12 doi: 10.3969/j.issn.1000-3177.2016.01.001
    NOVAK L M, OWIRKA G J, and NETISHEN C M. Performance of a high-resolution polarimetric SAR automatic target recognition system[J]. Lincoln Laboratory Journal, 1993, 6(1): 11–24.
    QIN Xianxiang, ZHOU Shilin, ZOU Huanxin, et al. A CFAR detection algorithm for generalized Gamma distributed background in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 806–810 doi: 10.1109/LGRS.2012.2224317
    张颢, 孟祥伟, 刘磊, 等. 改进的基于Parzen窗算法的SAR图像目标检测[J]. 计算机科学, 2015, 42(11A): 151–154

    ZHANG Hao, MENG Xiangwei, LIU Lei, et al. Improved parzen window based ship detection algorithm in SAR images[J]. Computer Science, 2015, 42(11A): 151–154
    DAI Hui, DU Lan, WANG Yan, et al. A modified CFAR algorithm based on object proposals for ship target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1925–1929 doi: 10.1109/LGRS.2016.2618604
    TIAN Sirui, WANG Chao, and ZHANG Hong. An improved nonparametric CFAR method for ship detection in single polarization synthetic aperetuer radar imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 6637–6640. doi: 10.1109/IGARSS.2016.7730733.
    张苗辉, 郭拯危, 刘扬. 基于混合模型的SAR影像海陆分割算法[J]. 光电子•激光, 2017, 28(3): 326–333 doi: 10.16136/j.joel.2017.03.0248

    ZHANG Miaohui, GUO Zhengwei, and LIU Yang. Sea-land segmentation algorithm for SAR images based on mixture models[J]. Journal of Optoelectronics•Laser, 2017, 28(3): 326–333 doi: 10.16136/j.joel.2017.03.0248
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (2424) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return