Citation: | Yan HU, Zili SHAN, Feng GAO. Candidate Region Extraction Method for Multi-satellite and Multi-resolution SAR Ships[J]. Journal of Electronics & Information Technology, 2019, 41(4): 770-778. doi: 10.11999/JEIT180525 |
The traditional methods based on CFAR and Kernel Density Estimation (KDE) for SAR ship candidate region extraction has the following defects: The choice of false alarm rate of CFAR depends on artificial experience; CFAR only models the sea clutter distribution, which poses a certain risk of missing detection to the target; When KDE is used to filter strong sea clutter, the threshold must be selected by artificial experience. These defects make the traditional method unable to adapt to complex scene, such as multi-satellite and multi-resolution. A candidate region extraction method for multi-satellite and multi-resolution SAR ships is proposed. In view of the defects of CFAR, an iterative method of mean dichotomy is proposed to approximate the target and calculate the segmentation threshold. The calculation efficiency of this method is more than 10 times higher than that of CFAR while overcoming the defects of CFAR; In view of the defects of KDE, block KDE combined with large threshold is used to filter strong sea clutter, and then seed point growth algorithm is used to reconstruct target. Because the large threshold has enough thresholds, the method can adapt to more complex scenarios. Experiments show that the proposed method has the advantages of no missed detection, self-adaptive threshold, high computational efficiency, and low false alarm rate. It has excellent multi-satellite and multi-resolution SAR ship candidate region extraction capability.
陈琪, 王娜, 陆军, 等. SAR图像港口区域舰船检测新方法[J]. 电子与信息学报, 2011, 33(9): 2132–2137 doi: 10.3724/SP.J.1146.2011.00018
CHEN Qi, WANG Na, LU Jun, et al. A new method for ship detection in harbor region of SAR images[J]. Journal of Electronics &Information Technology, 2011, 33(9): 2132–2137 doi: 10.3724/SP.J.1146.2011.00018
|
文伟, 曹雪菲, 张学峰. 一种基于多极化散射机理的极化SAR图像舰船目标检测方法[J]. 电子与信息学报, 2017, 39(1): 103–109 doi: 10.11999/JEIT160204
WEN Wei, CAO Xuefei, and ZHANG Xuefeng. PolSAR ship detection method based on multiple polarimetric scattering mechanisms[J]. Journal of Electronics &Information Technology, 2017, 39(1): 103–109 doi: 10.11999/JEIT160204
|
艾加秋, 齐向阳, 禹卫东. 改进的SAR图像双参数CFAR舰船检测算法[J]. 电子与信息学报, 2009, 31(12): 2881–2885 doi: 10.3724/SP.J.1146.2008.01707
AI Jiaqiu, QI Xiangyang, and YU Weidong. Improved two parameter CFAR ship detection algorithm in SAR images[J]. Journal of Electronics &Information Technology, 2009, 31(12): 2881–2885 doi: 10.3724/SP.J.1146.2008.01707
|
胡炎, 单子力, 高峰. 基于Faster-RCNN和多分辨率SAR的海上舰船目标检测[J]. 无线电工程, 2018, 48(2): 96–100 doi: 10.3969/j.issn.1003-3106.2018.02.04
HU Yan, SHAN Zili, and GAO Feng. Ship detection based on faster-RCNN and multi-resolution SAR[J]. Radio Engineering, 2018, 48(2): 96–100 doi: 10.3969/j.issn.1003-3106.2018.02.04
|
徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148 doi: 10.12000/JR16130
XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148 doi: 10.12000/JR16130
|
KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]. 2017 International Workshop on Remote Sensing with Intelligent, Shanghai, China, 2017: 1–4. doi: 10.1109/RSIP.2017.7958815.
|
WANG Chonglei, BI Fukun, ZHANG Weiping, et al. An intensity-space domain CFAR method for ship detection in HR SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4): 529–533 doi: 10.1109/LGRS.2017.2654450
|
LZZO A, LIGUORI M, CLEMENTE C, et al. Multimodel CFAR detection in foliage penetrating SAR images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1769–1780 doi: 10.1109/TAES.2017.2672018
|
熊开玲, 彭俊杰, 杨晓飞, 等. 基于核密度估计的K-means聚类优化[J]. 计算机技术与发展, 2017, 27(2): 1–5 doi: 10.3969/j.issn.1673-629X.2017.02.001
XIONG Kailing, PENG Junjie, YANG Xiaofei, et al. K-means clustering optimization based on kernel density estimation[J]. Computer Technology and Development, 2017, 27(2): 1–5 doi: 10.3969/j.issn.1673-629X.2017.02.001
|
冷祥光, 计科峰, 宋海波, 等. 影响星载SAR舰船检测的关键因素[J]. 遥感信息, 2016, 31(1): 3–12 doi: 10.3969/j.issn.1000-3177.2016.01.001
LENG Xiangguang, JI Kefeng, SONG Haibo, et al. Key factors influencing ship detection in spaceborne SAR imagery[J]. Remote Sensing Information, 2016, 31(1): 3–12 doi: 10.3969/j.issn.1000-3177.2016.01.001
|
NOVAK L M, OWIRKA G J, and NETISHEN C M. Performance of a high-resolution polarimetric SAR automatic target recognition system[J]. Lincoln Laboratory Journal, 1993, 6(1): 11–24.
|
QIN Xianxiang, ZHOU Shilin, ZOU Huanxin, et al. A CFAR detection algorithm for generalized Gamma distributed background in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 806–810 doi: 10.1109/LGRS.2012.2224317
|
张颢, 孟祥伟, 刘磊, 等. 改进的基于Parzen窗算法的SAR图像目标检测[J]. 计算机科学, 2015, 42(11A): 151–154
ZHANG Hao, MENG Xiangwei, LIU Lei, et al. Improved parzen window based ship detection algorithm in SAR images[J]. Computer Science, 2015, 42(11A): 151–154
|
DAI Hui, DU Lan, WANG Yan, et al. A modified CFAR algorithm based on object proposals for ship target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1925–1929 doi: 10.1109/LGRS.2016.2618604
|
TIAN Sirui, WANG Chao, and ZHANG Hong. An improved nonparametric CFAR method for ship detection in single polarization synthetic aperetuer radar imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 6637–6640. doi: 10.1109/IGARSS.2016.7730733.
|
张苗辉, 郭拯危, 刘扬. 基于混合模型的SAR影像海陆分割算法[J]. 光电子•激光, 2017, 28(3): 326–333 doi: 10.16136/j.joel.2017.03.0248
ZHANG Miaohui, GUO Zhengwei, and LIU Yang. Sea-land segmentation algorithm for SAR images based on mixture models[J]. Journal of Optoelectronics•Laser, 2017, 28(3): 326–333 doi: 10.16136/j.joel.2017.03.0248
|