Advanced Search
Volume 41 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
Fu YAN, Jianzhong XU, Fengshu LI. Training Multi-layer Perceptrons Using Chaos Grey Wolf Optimizer[J]. Journal of Electronics & Information Technology, 2019, 41(4): 872-879. doi: 10.11999/JEIT180519
Citation: Fu YAN, Jianzhong XU, Fengshu LI. Training Multi-layer Perceptrons Using Chaos Grey Wolf Optimizer[J]. Journal of Electronics & Information Technology, 2019, 41(4): 872-879. doi: 10.11999/JEIT180519

Training Multi-layer Perceptrons Using Chaos Grey Wolf Optimizer

doi: 10.11999/JEIT180519
Funds:  The National Social Science Foundation of China (16BJY078), The Key Program of Economic and Social of Heilongjiang Province (KY10900170004), The Philosophy and Social Science Research Planning Program of Heilongjiang Province (17JYH49)
  • Received Date: 2018-05-28
  • Rev Recd Date: 2018-12-03
  • Available Online: 2018-12-14
  • Publish Date: 2019-04-01
  • The Grey Wolf Optimizer (GWO) algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature, and it is an algorithm with high level of exploration and exploitation capability. This algorithm has good performance in searching for the global optimum, but it suffers from unbalance between exploitation and exploration. An improved Chaos Grey Wolf Optimizer called CGWO is proposed, for solving complex classification problem. In the proposed algorithm, Cubic chaos theory is used to modify the position equation of GWO, which strengthens the diversity of individuals in the iterative search process. A novel nonlinear convergence factor is designed to replace the linear convergence factor of GWO, so that it can coordinate the balance of exploration and exploitation in the CGWO algorithm. The CGWO algorithm is used as the trainer of the Multi-Layer Perceptrons (MLPs), and 3 complex classification problems are classified. The statistical results prove the CGWO algorithm is able to provide very competitive results in terms of avoiding local minima, solution precision, converging speed and robustness.

  • loading
  • MCCULLOCH W S and PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115–133 doi: 10.1007/BF02478259
    BEBIS G and GEORGIOPOULOS M. Feed-forward neural networks[J]. IEEE Potentials, 1994, 13(4): 27–31 doi: 10.1109/45.329294
    KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1464–1480 doi: 10.1109/5.58325
    JAFRASTEH B and FATHIANPOUR N. A hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimation[J]. Neurocomputing, 2017, 235: 217–227 doi: 10.1016/j.neucom.2017.01.016
    CHICEA D. Using neural networks for dynamic light scattering time series processing[J]. Measurement Science and Technology, 2017, 28(5): 055206 doi: 10.1088/1361-6501/aa61b4
    MORRO A, CANALS V, OLIVER A, et al. A stochastic spiking neural network for virtual screening[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 1371–1375 doi: 10.1109/TNNLS.2017.2657601
    MIRJALILI S. How effective is the Grey Wolf Optimizer in training multi-layer perceptrons[J]. Applied Intelligence, 2015, 43(1): 150–161 doi: 10.1007/s10489-014-0645-7
    ISA N A M and MAMAT W M F W. Clustered-hybrid multilayer perceptron network for pattern recognition application[J]. Applied Soft Computing, 2011, 11(1): 1457–1466 doi: 10.1016/j.asoc.2010.04.017
    韦岗, 李华, 徐秉铮. 关于前馈多层神经网络多维函数逼近能力的一个定理[J]. 电子科学学刊, 1997, 20(4): 433–438

    WEI Gang, LI Hua, and XU Bingzheng. A novel theorem on the multi-dimensional function approximation ability of feed forward multi-layer neural networks[J]. Journal of Electronics, 1997, 20(4): 433–438
    LIBANO F, RECH P, TAMBARA L, et al. On the reliability of linear regression and pattern recognition feedforward artificial neural networks in FPGAs[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 288–295 doi: 10.1109/TNS.2017.2784367
    LI Feng, ZURADA J M, LIU Yan, et al. Input layer regularization of multilayer feedforward neural networks[J]. IEEE Access, 2017, 5: 10979–10985 doi: 10.1109/ACCESS.2017.2713389
    MIRJALILI S, MOHD H S, and MORADIAN S H. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm[J]. Applied Mathematics and Computation, 2012, 218(22): 11125–11137 doi: 10.1016/j.amc.2012.04.069
    张长利, 房俊龙, 潘伟. 用遗传算法训练的多层前馈神经网络对番茄成熟度进行自动检测的研究[J]. 农业工程学报, 2001, 17(3): 153–156 doi: 10.3321/j.issn:1002-6819.2001.03.037

    ZHANG Changli, FANG Junlong, and PANG Wei. Automated identification of tomato maturation using multilayer feedforward neural network with genetic algorithms (GA)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2001, 17(3): 153–156 doi: 10.3321/j.issn:1002-6819.2001.03.037
    ZHANG Ridong and TAO Jili. A nonlinear fuzzy neural network modeling approach using an improved genetic algorithm[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5882–5892 doi: 10.1109/TIE.2017.2777415
    海宇娇, 刘青昆. 基于差分进化的ELM加权集成分类[J]. 计算机工程与应用, 2017, 53(8): 57–60 doi: 10.3778/j.issn.1002-8331.1510-0051

    HAI Yujiao and LIU Qingkun. ELM weighting ensemble classification based on differential evolution[J]. Computer Engineering and Applications, 2017, 53(8): 57–60 doi: 10.3778/j.issn.1002-8331.1510-0051
    LEEMAA N, NEHEMIAHA H K, and KANNANB A. Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets[J]. Applied Soft Computing, 2016, 49: 834–844 doi: 10.1016/j.asoc.2016.08.001
    MICHALIS M and YANG Shengxiang. Training neural networks with ant colony optimization algorithms for pattern classification[J]. Soft Computing, 2015, 19(6): 1511–1522 doi: 10.1007/s00500-014-1334-5
    KRZYSZTOF S and CHRISTIAN B. An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training[J]. Neural Computing and Applications, 2007, 16(3): 235–247 doi: 10.1007/s00521-007-0084-z
    ROBERT C G, WANG Lingfeng, and MANSOOR A. Training neural networks using central force optimization and particle swarm optimization: Insights and comparisons[J]. Expert Systems with Applications, 2012, 39(1): 555–563 doi: 10.1016/j.eswa.2011.07.046
    ZHANG Jingru, ZHANG Jun, LOCK T M, et al. A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training[J]. Applied Mathematics and Computation, 2007, 185(2): 1026–1037 doi: 10.1016/j.amc.2006.07.025
    CHEN Ke, ZHOU Fengyu, and LIU Aling. Chaotic dynamic weight particle swarm optimization for numerical function optimization[J]. Knowledge-Based Systems, 2018, 139: 23–40 doi: 10.1016/j.knosys.2017.10.011
    LONG Wen, JIAO Jianjun, LIANG Ximing, et al. An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization[J]. Engineering Applications of Artificial Intelligence, 2018, 68: 63–80 doi: 10.1016/j.engappai.2017.10.024
    MURO C, ESCOBEDO R, SPECTOR L, et al. Wolf-pack hunting strategies emerge from simple rules in computational simulations[J]. Behavioral Processes, 2011, 88(3): 192–197 doi: 10.1016/j.beproc.2011.09.006
    MIRJALILI S, MIRJALILI S M, and LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61 doi: 10.1016/j.advengsoft.2013.12.007
    UDWADIA F E and GUTTALU R S. Chaotic dynamics of a piecewise cubic map[J]. Physical Review A, 1989, 40(7): 4032–4044 doi: 10.1103/PhysRevA.40.4032
    龙文, 蔡绍洪, 焦建军, 等. 求解大规模优化问题的改进鲸鱼优化算法[J]. 系统工程理论与实践, 2017, 37(11): 2983–2994 doi: 10.12011/1000-6788(2017)11-2983-12

    LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems[J]. Systems Engineering-Theory &Practice, 2017, 37(11): 2983–2994 doi: 10.12011/1000-6788(2017)11-2983-12
    AlI M H, MOHAMMED B A D A, ISMAIL A, et al. A new intrusion detection system based on fast learning network and particle swarm optimization[J]. IEEE Access, 2018, 6: 20255–20261 doi: 10.1109/ACCESS.2018.2820092
    BLAKE C l and MERZ C J. UCI Repository of machine learning databases[OL]. http://archive.ics.uci.edu/ml/datasets.html, 1998.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (1877) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return