Advanced Search
Volume 41 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
Xiaodong QU, Yang SUN, Chong CHEN, Junlong SHI, Xin XU, Jutao LI, Wanhua ZHU, Guangyou FANG. Direction Finding for Electromagnetic Radiation Source Using Ultra-short Baseline Array[J]. Journal of Electronics & Information Technology, 2019, 41(4): 830-836. doi: 10.11999/JEIT180516
Citation: Xiaodong QU, Yang SUN, Chong CHEN, Junlong SHI, Xin XU, Jutao LI, Wanhua ZHU, Guangyou FANG. Direction Finding for Electromagnetic Radiation Source Using Ultra-short Baseline Array[J]. Journal of Electronics & Information Technology, 2019, 41(4): 830-836. doi: 10.11999/JEIT180516

Direction Finding for Electromagnetic Radiation Source Using Ultra-short Baseline Array

doi: 10.11999/JEIT180516
  • Received Date: 2018-05-28
  • Rev Recd Date: 2018-11-12
  • Available Online: 2018-11-23
  • Publish Date: 2019-04-01
  • To improve the location resolution of electromagnetic radiation source, a ultra-short baseline network CASMA (Mini-Array by Chinese Academy of Sciences) is proposed for detection, utilizing optical fiber for timing. CASMA contains 5 electromagnetic detection stations and a control unit. The distance between each pair of stations is about 1 km, meaning that the length of baseline to the wavelength is about 0.1. The timing accuracy is about 10 ns. CASMA is applied to record the vertical electric field emitting by radio transmitters. CASMA utilizes interferometric imaging algorithm to calculate the transmitters’ azimuth. By experiment, the calculated azimuths approach the expected azimuths with deviations are less than 0.2°, showing many advantages over traditional systems or methods. Consequently, CASMA has accuracy direction finding resolution for electromagnetic radiation source. According to the results, the location accuracy may be expected to be 0.5%·R in a 2500 km scope where R is the distance between the electromagnetic radiation source and CASMA using two sets of CASMA for intersection positioning.

  • loading
  • CUMMER S and FULLEKRUG M. Unusually intense continuing current in lightning produces delayed mesospheric breakdown[J]. Geophysics Research Letter, 2001, 28(3): 495–498 doi: 10.1029/2000GL012214
    CUMMER S, LI Jingbo, HAN Feng, et al. Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet[J]. Nature Geoscience, 2009, 2(9): 617–620 doi: 10.1038/NGEO607
    FULLEKRUG M, ROUSSELDUPRE R, SYMBALISTY E M D, et al. Relativistic electron beams above thunderclouds[J]. Atmospheric Chemistry & Physics & Discussions, 2011, 11(15): 7747–7754 doi: 10.5194/acp-11-7747-2011
    GEMELOS E S, INAN U S, WALT M, et al. Seasonal dependence of energetic electron precipitation: Evidence for a global role of lightning[J]. Geophysical Research Letters, 2009, 36(21): 147–148 doi: 10.1029/2009GL040396
    QIN Jianqi, CELESTIN S, and PASKO V P. Low frequency electromagnetic radiation from sprite streamers[J]. Geophysical Research Letters, 2012, 39(22): 1–5 doi: 10.1029/2012GL053991
    STOCK M G, AKITA M, RISON W, et al. Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm[J]. Journal of Geophysical Research Atmospheres, 2014, 119(6): 3134–3165 doi: 10.1002/2013JD020217
    THOMAS R J, KREHBIEL P R, RISON W, et al. Accuracy of the lightning mapping array[J]. Journal of Geophysical Research Atmospheres, 2004, 109(D14): 1–34 doi: 10.1029/2004JD004549
    CUMMINS K L, MURPHY M J, BARDO E A, et al. A combined TOA/MDF technology upgrade of the U.S. national lightning detection network[J]. Journal of Geophysical Research Atmospheres, 1998, 103(D8): 9035–9044 doi: 10.1029/98JD00153
    SMITH D A, EACK K B, HARLIN J, et al. The Los Alamos Sferic Array: A research tool for lightning investigations[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D13): 5–14 doi: 10.1029/2001JD000502
    BITZER P M, CHRISTIAN H J, STEWART M, et al. Characterization and applications of VLF/LF source locations from lightning using the Huntsville Alabama Marx Meter Array[J]. Journal of Geophysical Research Atmospheres, 2013, 118(8): 3120–3138 doi: 10.1002/jgrd.50271
    MEZENTSEV A and FULLEKRUG M. Mapping the radio sky with an interferometric network of low‐frequency radio receivers[J]. Journal of Geophysical Research Atmospheres, 2013, 118(15): 8390–8398 doi: 10.1002/jgrd.50671
    FULLEKRUG M, MEZENTSEV A, WATSON R, et al. Array analysis of electromagnetic radiation from radio transmitters for submarine communication[J]. Geophysical Research Letters, 2014, 41(24): 9143–9149 doi: 10.1002/2014GL062126
    FULLEKRUG M, MEZENTSEV A, WATSON R, et al. Map of low frequency electromagnetic noise in the sky[J]. Geophysical Research Letters, 2015, 42(11): 4648–4653 doi: 10.1002/2015GL064142
    FULLEKRUG M, SMITH N, MEZENTSEV A, et al. Multipath propagation of low frequency radio waves inferred from high resolution array analysis[J]. Radio Science, 2015, 50(11): 1141–1149 doi: 10.1002/2015RS005781
    LIU Zhongjian, KUANG L K, MEZENTSEV A, et al. Variable phase propagation velocity for long-range lightning location system[J]. Radio Science, 2016, 51(11): 1806–1815 doi: 10.1002/2016RS006058
    FULLEKRUG M, LIU Zhongjian, KOH K, et al. Mapping lightning in the sky with a mini array[J]. Geophysical Research Letters, 2016, 43(19): 10448–10454 doi: 10.1002/2016GL070737
    LYU Fanchao, CUMMER S A, SOLANKI R, et al. A low‐frequency near‐field interferometric TOA 3D Lightning Mapping Array[J]. Geophysical Research Letters, 2014, 41(22): 7777–7784 doi: 10.1002/2014GL061963
    CARTER G C. Coherence and time delay estimation[J]. Proceedings of the IEEE, 1987, 75(2): 236–255 doi: 10.1109/PROC.1987.13723
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (2165) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return