Citation: | Dongbo ZHANG, Liangling YI, Haixia XU, Ying ZHANG. Multi-scale Local Region Structure Dominant Binary Pattern Learning for Image Representation[J]. Journal of Electronics & Information Technology, 2019, 41(4): 896-903. doi: 10.11999/JEIT180512 |
By means of Zero-mean Microstructure Pattern Binarization (ZMPB), an image representation method based on image local microstructure binary pattern extraction is proposed. The method can express all the important patterns with visual meaning that may occur in the image. Moreover, through the dominant binary pattern learning model, the dominant feature pattern set adapted to the different data sets is obtained, which not noly achieves excellent ability in feature robustness, discriminative and representation, but also can greatly reduce the dimension of feature coding and improve the execution speed of the algorithm. The experimental results show that the proposed method has strong discriminative power and outperformes the traditional LBP and GIMMRP methods. Compared with many recent algorithms, the proposed method also presents a competitive advantage.
LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91–110 doi: 10.1023/B:VISI.0000029664.99615.94
|
BAY H and TUYTELAARS T. SURF: Speeded up robust features[J]. Computer Vision & Image Understanding, 2006, 110(3): 404–417 doi: 10.1007/11744023_32
|
MIKOLAJCZYK K and SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615–1630 doi: 10.1109/TPAMI.2005.188
|
ENGIN T, LEPETIT V, and FUA P. Daisy: An efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815–830 doi: 10.1109/TPAMI.2009.77
|
DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision & Pattern Recognition, San Francisco, USA, 2005: 886–893.
|
OJALA T, VALKEALAHTI K, OJA E, et al. Texture discrimination with multidimensional distributions of signed gray-level differences[J]. Pattern Recognition, 2001, 34(3): 727–739 doi: 10.1016/S0031-3203(00)00010-8
|
OJALA T, PIETIKAINEN M, and MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971–987 doi: 10.1109/TPAMI.2002.1017623
|
LIAO S, LAW M W K, and CHUNG A C S. Dominant local binary patterns for texture classification[J]. IEEE Transactionson Image Processing, 2009, 18(5): 1107–1118 doi: 10.1109/TIP.2009.2015682
|
张东波, 陈治强, 易良玲, 等. 图像微观结构的二值化表示与目标识别应用[J]. 电子与信息学报, 2018, 40(3): 633–640 doi: 10.11999/JEIT170513
ZHANG Dongbo, CHEN Zhiqiang, YI Liangling, et al. Binarization representation of image microstructure and the application of object recognition[J]. Journal of Electronics &Information Technology, 2018, 40(3): 633–640 doi: 10.11999/JEIT170513
|
HAMDAN B and MOKHTAR K. Face recognition using Angular Radial Transform[J]. Journal of King Saud University-Computer and Information Sciences, 2016, 30(2): 141–151 doi: 10.1016/j.jksuci.2016.10.006
|
ZHU Ningbo, TANG Ting, and TANG Shi. A sparse representation method based on kernel and virtual samples for face recognition[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(23): 6236–6241 doi: 10.1016/j.ijleo.2013.05.017
|
ZHANG Yuanyuan and ZHAO Dong. Adaptive convolutional neural network and its application in face recognition[J]. Neural Processing Letters, 2016, 43(2): 389–399 doi: 10.1007/s11063-015-9420-y
|
HUANG Pu and LAI Zhihui. Adaptive linear discriminant regression classification for face recognition[J]. Digital Signal Processing, 2016, 55: 78–84 doi: 10.1016/j.dsp.2016.05.001
|
WANG Sujing and ZHOU Chunguang. Face recognition using second-order discriminant tensor subspace analysis[J]. Neurocomputing, 2011, 74(12/13): 2142–2156 doi: 10.1016/j.neucom.2011.01.024
|
WANG Guoqiang and SHI Nianfeng. Embedded manifold-based kernel fisher discriminant analysis for face recognition[J]. Neural Processing Letters, 2016, 43(1): 1–16 doi: 10.1007/s11063-014-9398-x
|
SINGH G and CHHABRA I. Integrating global zernike and local discriminative HOG features for face recognition[J]. International Journal of Image & Graphics, 2016, 16(4): 1650021–1650042 doi: 10.1142/S0219467816500212
|
SHAO Hong and CHEN Shuang. Face recognition based on subset selection via metric learning on manifold[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(12): 1046–1058 doi: 10.1631/FITEE.1500085
|
DING Shifei and GUO Lili. Extreme learning machine with kernel model based on deep learning[J]. Neural Computing & Applications, 2017, 28(8): 1975–1984 doi: 10.1007/s00521-015-2170-y
|
ZHOU Yang and SUN Shiliang. Manifold partition discriminant analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 830–840 doi: 10.1109/TCYB.2016.2529299
|
WU Tingfang and LIN C J. Probability estimates for multi-class classification by pairwise coupling[J]. Journal of Machine Learning Research, 2004, 5(4): 975–1005.
|
SCHMIDHUBER J, CIRES D, and MEIER U. Multi-column deep neural networks for image classification[C]. IEEE Conference on Computer Vision & Pattern Recognition, Rod Aprovendis, USA, 2012: 3642–3649.
|
ZHANG Ziming and LADICKY L. Learning anchor planes for Classification[C]. Advances in Neural Information Processing Systems, Granada, Spain, 2011: 1611–1619.
|
EBRAHIMZADEH R and JAMPOUR M. Efficient handwritten digit recognition based on histogram of oriented gradients and SVM[J]. Annals of the Rheumatic Diseases, 2014, 104(9): 10–13 doi: 10.5120/18229-9167
|