Citation: | Yong WANG, Jinjun WU, Zengshan TIAN, Mu ZHOU, Shasha WANG. Gesture Recognition with Multi-dimensional Parameter Using FMCW Radar[J]. Journal of Electronics & Information Technology, 2019, 41(4): 822-829. doi: 10.11999/JEIT180485 |
A multi-parameter convolutional neural network method is proposed for gesture recognition based on Frequency Modulated Continuous Wave (FMCW) radar. A multidimensional parameter dataset is constructed for gestures by performing time-frequency analysis of the radar signal to estimate the distance, Doppler and angle parameters of the gesture target. To realize feature extraction and classification accurately, an end-to-end structured Range-Doppler-Angle of Time (RDA-T) multi-dimensional parameter convolutional neural network scheme is further proposed using multi-branch network structure and high-dimensional feature fusion. The experimental results reveal that using the combined gestures information of distance, Doppler and angle for multi-parameter learning, the proposed scheme resolves the problem of low information quantity of single-dimensional gesture recognition methods, and its accuracy outperforms the single-dimensional methods in terms of gesture recognition by 5%~8%.
LI Yunan, MIAO Qiguang, TIAN Kuan, et al. Large-scale gesture recognition with a fusion of RGB-D data based on the C3D model[C]. 2016 23rd International Conference on Pattern Recognition, Cancun, Mexico, 2016: 25–30.
|
HE Yiwen, YANG Jianyu, SHAO Zhanpeng, et al. Salient feature point selection for real time RGB-D hand gesture recognition[C]. IEEE International Conference on Real-time Computing and Robotics, Okinawa, Japan, 2017: 103–108.
|
ALMASRE M A and AL-NUAIM H. Recognizing Arabic Sign Language gestures using depth sensors and a KSVM classifie[C]. Computer Science and Electronic Engineering, Colchester, UK, 2016: 146–151.
|
AUGUSTAUSKAS R and LIPNICKAS A. Robust hand detection using arm segmentation from depth data and static palm gesture recognition[C]. Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Bucharest, Romania, 2017, 2: 664–667.
|
DEKKER B, JACOBS S, KOSSEN A S, et al. Gesture recognition with a low power FMCW radar and a deep convolutional neural network[C]. Radar Conference, Nuremberg, Germany, 2017: 163–166.
|
MOLCHANOV P, GUPTA S, KIM K, et al. Multi-sensor system for driver's hand-gesture recognition[C]. Automatic Face and Gesture Recognition, Ljubljana, Slovenia, 2015, 1: 1–8.
|
LIN J J, LI Yuanping, HSU W C, et al. Design of an FMCW radar baseband signal processing system for automotive application[J]. Springerplus, 2016, 5(1): 42–57 doi: 10.1186/s40064-015-1583-5
|
LI Gang, ZHANG Rui, RITCHIE M, et al. Sparsity-driven micro-Doppler feature extraction for dynamic hand gesture recognition[J]. IEEE Transactions on Aerospace & Electronic Systems, 2018, 54(2): 655–665 doi: 10.1109/TAES.2017.2761229
|
ZHANG Shimeng, LI Gang, RITCHIE M, et al. Dynamic hand gesture classification based on radar micro-Doppler signatures[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–4.
|
KIM Y and TOOMAJIAN B. Hand gesture recognition using micro-Doppler signatures with convolutional neural network[J]. IEEE Access, 2016, 4: 7125–7130 doi: 10.1109/ACCESS.2016.2617282
|
MOLCHANOV P, GUPTA S, KIM K, et al. Short-range FMCW monopulse radar for hand-gesture sensing[C]. Radar Conference, Arlington, USA, 2015: 1491–1496.
|
WANG Saiwen, SONG Jie, LIEN J, et al. Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum[C]. Proceedings of the 29th Annual Symposium on User Interface Software and Technology, New York, USA, 2016: 851–860.
|
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, Montreal, Canada, 2012: 1097–1105.
|
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[OL]. https://arxiv.org/abs/1409. 1556, 2014.
|
HE Kaiming, ZHANG Xianyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
|
IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[OL]. https://arxiv.org/abs/1502.03167, 2015.
|
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826.
|
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. International Conference on Computer Vision, Santiago, Chile, 2015: 4489–4497.
|
MOLCHANOV P, GUPTA S, KIM K, et al. Hand gesture recognition with 3D convolutional neural networks[C]. Computer Vision and Pattern Recognition Workshops, Boston, USA, 2015: 1–7.
|
SIMONYAN K and ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]. Advances in Neural Information Processing Systems, Montreal, Canada, 2014: 568–576.
|
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280 doi: 10.1109/TAP.1986.1143830
|
HE Kaiming and SUN Jian. Convolutional neural networks at constrained time cost[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5353–5360.
|