Advanced Search
Volume 41 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
Yong WANG, Jinjun WU, Zengshan TIAN, Mu ZHOU, Shasha WANG. Gesture Recognition with Multi-dimensional Parameter Using FMCW Radar[J]. Journal of Electronics & Information Technology, 2019, 41(4): 822-829. doi: 10.11999/JEIT180485
Citation: Yong WANG, Jinjun WU, Zengshan TIAN, Mu ZHOU, Shasha WANG. Gesture Recognition with Multi-dimensional Parameter Using FMCW Radar[J]. Journal of Electronics & Information Technology, 2019, 41(4): 822-829. doi: 10.11999/JEIT180485

Gesture Recognition with Multi-dimensional Parameter Using FMCW Radar

doi: 10.11999/JEIT180485
Funds:  The National Natural Science Foundation of China (61771083, 61704015), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Special Fund of Chongqing Key Laboratory (CSTC), The Fundamental and Frontier Research Project of Chongqing (cstc2017jcyjAX0380, cstc2015jcyjBX0065), The University Outstanding Achievement Transformation Project of Chongqing (KJZH17117), The Scientific and Technological Research Foundation of Chongqing Municipal Education Commission (KJ1704083)
  • Received Date: 2018-05-21
  • Rev Recd Date: 2018-08-30
  • Available Online: 2018-09-13
  • Publish Date: 2019-04-01
  • A multi-parameter convolutional neural network method is proposed for gesture recognition based on Frequency Modulated Continuous Wave (FMCW) radar. A multidimensional parameter dataset is constructed for gestures by performing time-frequency analysis of the radar signal to estimate the distance, Doppler and angle parameters of the gesture target. To realize feature extraction and classification accurately, an end-to-end structured Range-Doppler-Angle of Time (RDA-T) multi-dimensional parameter convolutional neural network scheme is further proposed using multi-branch network structure and high-dimensional feature fusion. The experimental results reveal that using the combined gestures information of distance, Doppler and angle for multi-parameter learning, the proposed scheme resolves the problem of low information quantity of single-dimensional gesture recognition methods, and its accuracy outperforms the single-dimensional methods in terms of gesture recognition by 5%~8%.

  • loading
  • LI Yunan, MIAO Qiguang, TIAN Kuan, et al. Large-scale gesture recognition with a fusion of RGB-D data based on the C3D model[C]. 2016 23rd International Conference on Pattern Recognition, Cancun, Mexico, 2016: 25–30.
    HE Yiwen, YANG Jianyu, SHAO Zhanpeng, et al. Salient feature point selection for real time RGB-D hand gesture recognition[C]. IEEE International Conference on Real-time Computing and Robotics, Okinawa, Japan, 2017: 103–108.
    ALMASRE M A and AL-NUAIM H. Recognizing Arabic Sign Language gestures using depth sensors and a KSVM classifie[C]. Computer Science and Electronic Engineering, Colchester, UK, 2016: 146–151.
    AUGUSTAUSKAS R and LIPNICKAS A. Robust hand detection using arm segmentation from depth data and static palm gesture recognition[C]. Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Bucharest, Romania, 2017, 2: 664–667.
    DEKKER B, JACOBS S, KOSSEN A S, et al. Gesture recognition with a low power FMCW radar and a deep convolutional neural network[C]. Radar Conference, Nuremberg, Germany, 2017: 163–166.
    MOLCHANOV P, GUPTA S, KIM K, et al. Multi-sensor system for driver's hand-gesture recognition[C]. Automatic Face and Gesture Recognition, Ljubljana, Slovenia, 2015, 1: 1–8.
    LIN J J, LI Yuanping, HSU W C, et al. Design of an FMCW radar baseband signal processing system for automotive application[J]. Springerplus, 2016, 5(1): 42–57 doi: 10.1186/s40064-015-1583-5
    LI Gang, ZHANG Rui, RITCHIE M, et al. Sparsity-driven micro-Doppler feature extraction for dynamic hand gesture recognition[J]. IEEE Transactions on Aerospace & Electronic Systems, 2018, 54(2): 655–665 doi: 10.1109/TAES.2017.2761229
    ZHANG Shimeng, LI Gang, RITCHIE M, et al. Dynamic hand gesture classification based on radar micro-Doppler signatures[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–4.
    KIM Y and TOOMAJIAN B. Hand gesture recognition using micro-Doppler signatures with convolutional neural network[J]. IEEE Access, 2016, 4: 7125–7130 doi: 10.1109/ACCESS.2016.2617282
    MOLCHANOV P, GUPTA S, KIM K, et al. Short-range FMCW monopulse radar for hand-gesture sensing[C]. Radar Conference, Arlington, USA, 2015: 1491–1496.
    WANG Saiwen, SONG Jie, LIEN J, et al. Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum[C]. Proceedings of the 29th Annual Symposium on User Interface Software and Technology, New York, USA, 2016: 851–860.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, Montreal, Canada, 2012: 1097–1105.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[OL]. https://arxiv.org/abs/1409. 1556, 2014.
    HE Kaiming, ZHANG Xianyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[OL]. https://arxiv.org/abs/1502.03167, 2015.
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826.
    TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. International Conference on Computer Vision, Santiago, Chile, 2015: 4489–4497.
    MOLCHANOV P, GUPTA S, KIM K, et al. Hand gesture recognition with 3D convolutional neural networks[C]. Computer Vision and Pattern Recognition Workshops, Boston, USA, 2015: 1–7.
    SIMONYAN K and ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]. Advances in Neural Information Processing Systems, Montreal, Canada, 2014: 568–576.
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280 doi: 10.1109/TAP.1986.1143830
    HE Kaiming and SUN Jian. Convolutional neural networks at constrained time cost[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5353–5360.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (3585) PDF downloads(238) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return