Advanced Search
Volume 41 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
Liang ZHOU, Jin MENG, Hao WU, Yongcai LIU, Wei LIU. Interference Modeling of Two Point Source Retrodirective Cross-eye Considering Target Echo[J]. Journal of Electronics & Information Technology, 2019, 41(4): 816-821. doi: 10.11999/JEIT180482
Citation: Liang ZHOU, Jin MENG, Hao WU, Yongcai LIU, Wei LIU. Interference Modeling of Two Point Source Retrodirective Cross-eye Considering Target Echo[J]. Journal of Electronics & Information Technology, 2019, 41(4): 816-821. doi: 10.11999/JEIT180482

Interference Modeling of Two Point Source Retrodirective Cross-eye Considering Target Echo

doi: 10.11999/JEIT180482
Funds:  The National Natural Science Foundation of China (71801220, 61801502)
  • Received Date: 2018-05-21
  • Rev Recd Date: 2018-12-06
  • Available Online: 2018-12-20
  • Publish Date: 2019-04-01
  • In view of the strong anti-jamming capability of monopulse radar, the cross eye is used to interfere with monopulse radar. Monopulse radar is widely used in missile terminal guidance for precise attack on aircraft and ship targets. Based on the radar equation and the principle of monopulse radar angle measurement, the retrodirective cross-eye interference of the isolated target and the two point source under the target echo are modeled. Based on the analysis method of linear fitting, the general formula of two source reverse cross eye parameters and monopulse radar indicating angle are obtained. The influence of jammer power, signal phase difference, signal amplitude ratio and echo signal phase on the angle deception effect of monopulse radar is discussed through case simulation. The results show that: The phase difference of the two signals emitted by the jammer is closer to 180° and the amplitude ratio is closer to 1, the better the angle deception effect of the jammer is to the monopulse radar; with the increase of jammer power, the parameter tolerance of jammers is more relaxed when JSR (10~25 dB) is increased; and due to the influence of target echeo phase, the jamming effect of jammer is unstable; the mathematical model is consistent with the simulation model of monopulse radar receiver. This study can provide reference for the design of reverse cross eye jammers for aircraft and ships.

  • loading
  • SHERMAN S M. Monopulse Principles and Techniques[M]. Second Ed., Dedham Ma Artech House Inc P, 2011: 283–284.
    LEE S H, LEE S J, CHOI I O, et al. ICA-based phase-comparison monopulse technique for accurate angle estimation of multiple targets[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 323–331 doi: 10.1049/iet-rsn.2017.0156
    赵珊珊, 张林让, 李强, 等. 分布式多站雷达转发式欺骗干扰研究[J]. 电子与信息学报, 2017, 39(1): 138–143 doi: 10.11999/JEIT160118

    ZHAO Shanshan, ZHANG Linrang, LI Qiang, et al. Research on repeater jamming against distributed multiple-radar system[J]. Journal of Electronics &Information Technology, 2017, 39(1): 138–143 doi: 10.11999/JEIT160118
    李永祯, 胡万秋, 陈思伟, 等. 有源转发式干扰的全极化单脉冲雷达抑制方法研究[J]. 电子与信息学报, 2015, 37(2): 276–282 doi: 10.11999/JEIT140146

    LI Yongzhen, HU Wanqiu, CHEN Siwei, et al. Active repeater jamming suppression using polarimetric monopulse radar[J]. Journal of Electronics &Information Technology, 2015, 37(2): 276–282 doi: 10.11999/JEIT140146
    刘松杨, 董春曦, 朱颖童, 等. 基于角度参数特定边界值的旋转交叉眼干扰容限研究[J]. 电子与信息学报, 2016, 38(4): 906–912 doi: 10.11999/JEIT150903

    LIU Songyang, DONG Chunxi, ZHU Yingtong, et al. Tolerance analysis of rotating cross-eye jamming based on angle factor specific boundary value[J]. Journal of Electronics &Information Technology, 2016, 38(4): 906–912 doi: 10.11999/JEIT150903
    SHERMAN S M. Complex indicated angles applied to unresolved radar targets and multipath[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(1): 160–170 doi: 10.1109/TAES.1971.310264
    FALK L. Cross-eye jamming of monopulse radar[C]. Proceedings of the IEEE Waveform Diversity and Design Conference, Pisa, Italy, 2007: 209–213.
    CAO Fei, LIU Qingyun, and WU Fan. The cross-eye jamming mathematical modeling[J]. Applied Mechanics and Materials, 2013, 344: 125–128 doi: 10.4028/www.scientific.net/AMM.344
    王建路, 戴幻尧, 张扬, 等. 反向交叉眼干扰特性建模与仿真[J]. 雷达科学与技术, 2016, 14(5): 471–477 doi: 10.3969/j.issn.1672-2337.2016.05.004

    WANG Jianlu, DAI Huanyao, ZHANG Yang, et al. Analysis of cross-eye jamming characteristic with reverse struc-ture[J]. Radar Science and Technology, 2016, 14(5): 471–477 doi: 10.3969/j.issn.1672-2337.2016.05.004
    LIU Songyang, DONG Chunxi, ZHU Yingtong, et al. Analysis of rotating cross-eye jamming[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 939–942 doi: 10.1109/LAWP.2014.2387423
    刘松杨, 董春曦, 董阳阳, 等. 旋转的正交多点源反向交叉眼干扰分析[J]. 电子与信息学报, 2016, 38(6): 1424–1430 doi: 10.11999/JEIT150919

    LIU Songyang, DONG Chunxi, DONG Yangyang, et al. Analysis of rotating ortho gonal multiple elements retrodirective cross-eye jamming[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1424–1430 doi: 10.11999/JEIT150919
    LIU Tianpeng, LIAO Dongping, WEI Xizhang, et al. Performance analysis of multiple-element retrodirective cross-eye jamming based on linear array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1867–1876 doi: 10.1109/TAES.2015.140035
    王彩云, 何志勇, 宫俊. 多干扰机反向交叉眼干扰分析[J]. 系统工程与电子技术, 2017, 39(7): 1457–1463 doi: 10.3969/j.issn.1001-506X.2017.07.05

    WANG Caiyun, HE Zhiyong, and GONG Jun. Analysis of retro-directive cross-eye jamming for multiple elements[J]. Systems Engineering and Electronics, 2017, 39(7): 1457–1463 doi: 10.3969/j.issn.1001-506X.2017.07.05
    PLESSIS W P D. Cross-eye gain in multiloop retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 875–882 doi: 10.1109/TAES.2016.140112
    LU Jianrong, LIU Tianpeng, LIU Zhen, et al. Analysis of multi-loop retrodirective cross-eye jamming system for large platform[C]. Progress in Electromagnetics Research Symposium, Petersburg, Russia, 2017: 565–572.
    PLESSIS W P D. Analysis of path-length effects in multi-loop cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2266–2276 doi: 10.1109/TAES.2017.2690538
    PLESSIS W P D. Path-length compensation in multi-loop retrodirective cross-eye jamming[OL]. https://www.researchgate.net/publication/320281324. 2018.
    LIU Tianpeng, LIU Zhen, LIAO Dongping, et al. Platform skin return and multiple-element linear retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 821–835 doi: 10.1109.TAES.2016.140949
    PLESSIS W P D. Platform skin return and retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 490–501 doi: 10.1109/TAES.2012.6129650
    黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 112.

    HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Characteristics[M]. Beijing: Publishing House of Electronics Industry, 2005: 112.
    张娇云. 单脉冲雷达导引头建模与仿真研究[D]. [硕士论文], 西安电子科技大学, 2006.

    ZHANG Jiaoyun. The study on modeling and simulation of monopulse pulse radar seeker[D]. [Master dissertation], Xidian University, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1938) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return