Citation: | Ling ZHUANG, Juan GUAN, Jingyi MA, Guangyu WANG. An Improvement Project of Roundoff Noise Performance of FIR Filters Based on Structure Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(4): 932-938. doi: 10.11999/JEIT180480 |
For the problem of the finite word length effect of prototype filters in hardware implementation of the filter bank system, this paper studies how to improve the performance of roundoff noise caused by signal quantization for the FIR prototype filter, that is, to reduce the roundoff noise gain. An FIR filter optimization structure is proposed. By analyzing the source of roundoff noise, a polynomial parameterization method is used to derive the roundoff noise gain expression. The simulation example shows that the amplitude-frequency and phase-frequency response of the proposed structure filter are basically consistent with the ideal state under different constraint of word length. Compared with the existing algorithms, the proposed structure has a smaller roundoff noise gain.
BELLANGER M, LERUYET D, ROVIRAS D, et al. FBMC physical layer: A primer[R]. P7-ICT Project PHYDYAS, 2010.
|
FARHANG-BOROUJENY B. OFDM versus filter bank multicarrier[J]. IEEE Signal Processing Magazine, 2011, 28(3): 92–112 doi: 10.1109/MSP.2011.940267
|
NADAL J, NOUR C A, and BAGHDADI A. Design and evaluation of a novel short prototype filter for FBMC/OQAM modulation[J]. IEEE Access, 2018, 6: 19610–19625 doi: 10.1109/ACCESS.2018.2818883
|
SHARMA I, KUMAR A, SINGH G K, et al. Design of multiplierless prototype filter for two-channel filter bank using hybrid method in FCSD space[J]. IET Circuits, Devices & Systems, 2017, 11(1): 29–40 doi: 10.1049/iet-cds.2016.0124
|
JIANG Junzheng, LING Wingkuen, and OUYANG Shan. Efficient design of prototype filter for large scale filter bank-based multicarrier systems[J]. IET Signal Processing, 2017, 11(5): 521–526 doi: 10.1049/iet-spr.2016.0566
|
ROTTENBERG F, MESTRE X, HORLIN F, et al. Performance analysis of linear receivers for uplink Massive MIMO FBMC-OQAM systems[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 830–842 doi: 10.1109/TSP.2017.2778682
|
NA D and CHOI K. Low PAPR FBMC[J]. IEEE Transactions on Wireless Communications, 2018, 17(1): 182–193 doi: 10.1109/TWC.2017.2764028
|
RENCZES B, KOLLÁR I, MOSCHITTA A, et al. Numerical optimization problems of Sine-wave fitting algorithms in the presence of roundoff errors[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(8): 1785–1795 doi: 10.1109/TIM.2016.2562218
|
贾建华. FIR滤波器有限字长效应产生的特性畸变与零点分布的关系[J]. 上海铁道学院学报, 1994, 15(3): 26–31
JIA Jianhua. The relation of zero distribution and distortion variation for finite register length effects in FIR digital filter[J]. Journal of Shanghai Institute of Railway Technology, 1994, 15(3): 26–31
|
KOTTERI K A, BELL A E, and CARLETTA J E. Quantized FIR filter design using compensating zeros[J]. IEEE Signal Processing Magazine, 2003, 20(6): 60–67 doi: 10.1109/MSP.2003.1253556
|
KODAR D. Design of optimal finite wordlength FIR digital filters using integer programming techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980, 28(3): 304–308 doi: 10.1109/TASSP.1980.1163407
|
LIM Y C and PARKER S R. FIR filter design over a discrete powers-of-two coefficient space[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31(3): 583–591 doi: 10.1109/TASSP.1983.1164085
|
殷福亮, 周浩洋. 设计有限字长FIR数字滤波器的Tabu优化算法[J]. 电子与信息学报, 2003, 25(10): 1367–1372
YIN Fuliang and ZHOU Haoyang. Tabu optimization algorithm for designing finite wordlength FIR digital filters[J]. Journal of Electronics &Information Technology, 2003, 25(10): 1367–1372
|
BENVENUTO N and MARCHESI M. Digital filters design by simulated annealing[J]. IEEE Transactions on Circuits and Systems, 1989, 36(3): 459–460 doi: 10.1109/31.17597
|
WONG N and NG T S. A generalized direct-form delta-operator based IIR filter with minimum noise gain and sensitivity[J]. IEEE Transactions on Circuits and Systems II, 2001, 48(4): 425–431 doi: 10.1109/82.933811
|