Citation: | Weijia CUI, Peng ZHANG, Bin BA. Time of Arrival Estimation Based on Sparse Reconstruction Loop Matching Pursuit Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(3): 523-529. doi: 10.11999/JEIT180460 |
Under Single Measurement Vector (SMV) and low Signal-to-Noise Ratio (SNR) conditions, the sparse reconstruction method can improve the estimation accuracy of Time Of Arrival (TOA). However, the existing reconstruction algorithms have some mistakes and missing in the selection of sparse support set elements, which leads to limited estimation accuracy. In order to solve this problem, this paper proposes an algorithm based on sparse reconstruction Loop Matching Pursuit (LMP), which improves the estimation accuracy of the direct path. The algorithm first establishes a sparse representation model of channel impulse response. Then, under the premise of having obtained initial support set, the elements in the support set are removed cyclically. In addition, according to the maximum value of the current residual within the product, the remaining elements are used to match and add the new elements until the residual product is the same. Finally, the estimate of the TOA is obtained using the relationship between the time delay value and the sparse support set. The simulation results show that the proposed algorithm has higher estimation accuracy than the traditional sparse reconstruction time delay estimation algorithm. At the same time, based on the USRP platform, the effectiveness of the proposed algorithm is verified by the actual signal.
CHEON J, HWANG H, KIM D, et al. IEEE 802.15.4 Zigbee-based time-of-arrival estimation for wireless sensor networks[J]. Sensors, 2016, 16(2): 203. doi: 10.3390/s16020203
|
LI Xinya, DENG Zhiqun, RAUCHENSTEIN L T, et al. Contributed review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements[J]. Review of Scientific Instruments, 2016, 87(4): 921–960. doi: 10.1063/1.4947001
|
ANASTOPOULOS C and SAVVIDOU N. Time-of-arrival correlations[J]. Physical Review A, 2017, 95(3): 100–105. doi: 10.1103/PhysRevA.95.032105
|
AN S P, HU T Y, CUI Y F, et al. Cumulant-based time delay estimations based solution for statics correction of land data[C]. 79th EAGE Conference and Exhibition. Paris, France, 2017: 1–3.
|
CHENG Lin, CHEN Gang, GAO Wenzhong, et al. Adaptive time delay compensator (ATDC) design for wide-area power system stabilizer[J]. IEEE Transactions on Smart Grid, 2014, 5(6): 2957–2966. doi: 10.1109/TSG.2014.2347401
|
CHLMPAGNE B, EIZENMAN M, and PASUPATHY S. Exact maximum likelihood time delay estimation[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Washington, D.C., USA, 1991: 2633–2636.
|
李雪梅, 陶然, 王越. 时延估计技术研究[J]. 雷达科学与技术, 2010, 8(4): 362–371. doi: 10.3969/j.issn.1672-2337.2010.04.015
LI Xuemei, TAO Ran, and WANG Yue. Research on time delay estimation technology[J]. Radar Science and Technology, 2010, 8(4): 362–371. doi: 10.3969/j.issn.1672-2337.2010.04.015
|
DOGAN M C, and MENDEL J M. Applications of cumulants to array processing. I. aperture extension and array calibration[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1200–1216. doi: 10.1109/78.382404
|
HÄCKER P and YANG B. Single snapshot DOA estimation[J]. Advances in Radio Science, 2010, 8(2): 251–256. doi: 10.5194/ars-8-251-2010
|
WANG Fangqiu and ZHANG Xiaofei. Joint estimation of TOA and DOA in IR-UWB system using sparse representation framework[J]. Etri Journal, 2014, 36(3): 460–468. doi: 10.4218/etrij.14.0113.0555
|
冷雪冬, 巴斌, 逯志宇, 等. 基于回溯筛选的稀疏重构时延估计算法[J]. 物理学报, 2016, 65(21): 88–96. doi: 10.7498/aps.65.210701
LENG Xuedong, BA Bin, LU Zhiyu, et al. Backtracking-based sparse reconstruction delay estimation algorithm[J]. Acta Physica Sinica, 2016, 65(21): 88–96. doi: 10.7498/aps.65.210701
|
NAFIE M, TEWFIK A H, ALI M, et al. Deterministic and iterative solutions to subset selection problems[J]. IEEE Transactions on Signal Processing, 2002(7): 1591–1601. doi: 10.1109/tsp.2002.1011200
|
李智勇. 基于压缩感知的脉冲超宽带系统窄带干扰抑制问题研究[D]. [博士论文], 山东大学, 2014: 17–21.
LI Zhiyong. Research on narrowband interference suppression in pulsed ultra-wideband systems based on Compressed Sensing[D]. [Ph.D. dissertation], Shandong University, 2014: 17–21.
|
张宏洲. 稀疏场景合成孔径雷达图像压缩研究[D]. [博士论文], 上海交通大学, 2010: 13–15.
ZHANG Hongzhou. Research on image compression of sparse scene synthetic aperture radar[D]. [Ph.D. dissertation], Shanghai Jiao Tong University, 2010: 13–15.
|
胡南. 基于稀疏重构的阵列信号波达方向估计算法研究[D]. [博士论文], 中国科学技术大学, 2013: 20–26.
HU Nan. Research on direction of arrival estimation of array signals based on sparse reconstruction[D]. [Ph.D. dissertation], University of Science and Technology of China, 2013: 20–26.
|
王方秋, 张小飞, 汪飞. IR-UWB系统中基于root-MUSIC算法的TOA和DOA联合估计[J]. 通信学报, 2014, 35(2): 137–145. doi: 10.3969/j.issn.1000-436x.2014.02.018
WANG Fangqiu, ZHANG Xiaofei, and WANG Fei. Joint estimation of TOA and DOA based on Root-MUSIC algorithm in IR-UWB system[J]. Journal of Communications, 2014, 35(2): 137–145. doi: 10.3969/j.issn.1000-436x.2014.02.018
|
巴斌, 郑娜娥, 朱世磊, 等. 利用蒙特卡罗的最大似然时延估计算法[J]. 西安交通大学学报, 2015, 49(8): 24–30. doi: 10.7652/xjtuxb201508005
BA Bin, ZHENG Nae, ZHU Shilei, et al. A maximum likelihood time delay estimation algorithm using Monte Carlo method[J]. Journal of Xi’an Jiaotong University, 2015, 49(8): 24–30. doi: 10.7652/xjtuxb201508005
|
MATTBEWS. GAST. Definitive Guide to 802.11 Wireless Networks[M]. Nanjing: Southeast University Press, 2007: 293–297.
|