Advanced Search
Volume 41 Issue 4
Mar.  2019
Turn off MathJax
Article Contents
Yanhao CHEN, Zhongyan LIU, Liyan ZHOU. Optical Image Encryption Algorithm Based on Differential Mixed Mask and Chaotic Gyrator Transform[J]. Journal of Electronics & Information Technology, 2019, 41(4): 888-895. doi: 10.11999/JEIT180456
Citation: Yanhao CHEN, Zhongyan LIU, Liyan ZHOU. Optical Image Encryption Algorithm Based on Differential Mixed Mask and Chaotic Gyrator Transform[J]. Journal of Electronics & Information Technology, 2019, 41(4): 888-895. doi: 10.11999/JEIT180456

Optical Image Encryption Algorithm Based on Differential Mixed Mask and Chaotic Gyrator Transform

doi: 10.11999/JEIT180456
Funds:  The National Natural Science Foundation of China (U1204606), The Special Research Funding Project of Science and Technology Development Center of Ministry Education (2017B06113), The Key Research Funding Projects of Universities in Henan (16A520083), The Information Technology Research Foundation Project of Henan Province (ITE12071)
  • Received Date: 2018-05-14
  • Rev Recd Date: 2018-08-25
  • Available Online: 2018-12-05
  • Publish Date: 2019-04-01
  • In order to improve the ability of anti-chosen plaintext attack and decryption quality under unknown attack in current optical encryption technology, an optical image encryption algorithm based on chaotic Gyrator transform and differential mixed mask is proposed. The input plaintext is converted into its corresponding Quick Response (QR) code. The chaotic phase mask is generated according to the Logistic map. At the same time, the radial Hilbert and the zone plate phase function are combined to fuse with the chaotic phase mask for constructing the mixed phase mask. Then, a random sequence of Logistic chaotic maps is used to calculate the rotation angle of the Gyrator transformation, and the QR code is modulated to form Gyrator spectrum by combining the mixed phase mask. The Gyrator spectrum is divided into two components by introducing the equivalent decomposition technique, and two differential spiral phase masks are obtained by setting up different orders. Then, the Singular Value Decomposition (SVD) is introduced to process one of the Gyrator spectral components so that its corresponding orthogonal matrix is encoded by combining two differential phase masks. Finally, by combining the encoded orthogonal matrix and diagonal matrix, the  encrypted cipher is outputted based on thereversible SVD technology. The ability of resisting plaintext attack and clipping attack, as well as the sensitivity level of the encryption results to key change is analyzed theoretically. Experimental results show that the algorithm has good security performance.

  • loading
  • 吕群, 薛伟. 结合混沌系统和动态S-盒的图像加密算法[J]. 小型微型计算机系统, 2018, 39(3): 607–613 doi: 10.3969/j.issn.1000-1220.2018.03.038

    LÜ Qun and XUE Wei. Image encryption algorithm combining chaotic system and dynamic S-boxes[J]. Journal of Chinese Computer Systems, 2018, 39(3): 607–613 doi: 10.3969/j.issn.1000-1220.2018.03.038
    PARVAZ R and ZAREBNIA M. A combination chaotic system and application in color image encryption[J]. Optics and Laser Technology, 2018, 101(1): 30–41 doi: 10.1016/j.optlastec.2017.10.024
    JAMAL M. Image encryption based on fractal geometry and chaotic map[J]. Diyala Journal for Pure Science, 2018, 14(1): 166–182 doi: 10.24237/djps.1401.367A
    SUI L S, XU M J, and TIAN A L. Optical noise-free image encryption based on quick response code and high dimension chaotic system in gyrator transform domain[J]. Optics and Lasers in Engineering, 2017, 91: 106–114 doi: 10.1016/j.optlaseng.2016.11.017
    张博, 龙慧, 江沸菠. 基于相干叠加与模均等矢量分解的光学图像加密算法[J]. 电子与信息学报, 2018, 40(2): 438–446 doi: 10.11999/JEIT170489

    ZHANG Bo, LONG Hui, and JIANG Feibo. Optical image encryption algorithm based on coherent superposition and modulus equal vector decomposition[J]. Journal of Electronics &Information, 2018, 40(2): 438–446 doi: 10.11999/JEIT170489
    LIU Xiaoyong, CAO Yiping, LU Pei, et al. Optical image encryption technique based on compressed sensing and Arnold transformation[J]. Optik, 2013, 124(24): 6590–6593 doi: 10.1016/j.ijleo.2013.05.092
    VERMA G and SINHA A. Optical image encryption system using nonlinear approach based on biometric authentication[J]. Journal of Modern Optics, 2017, 64(13): 1321–1329 doi: 10.1080/09500340.2017.1287435
    李彤. 基于混沌与Gyrator变换的彩色图像加密算法研究[D]. [硕士论文], 西安邮电大学, 2017: 12–15.

    LI Tong. Research on color image encryption algorithm based on chaos and Gyrator transform[D]. [Master dissertation], Xi’an University of Post and Telecommunications, 2017: 12–15.
    肖宁, 李爱军. 基于圆谐分量展开与Gyrator变换域相位检索的光学图像加密算法[J]. 电子测量与仪器学报, 2017, 31(6): 876–884 doi: 10.13382/j.jemi.2017.06.009

    XIAO Ning and LI Aijun. Optical image encryption algorithm based on circular harmonic component expansion and phase retrieval in Gyrator transform domain[J]. Journal of Electronic Measurement and Instrument, 2017, 31(6): 876–884 doi: 10.13382/j.jemi.2017.06.009
    SUI Liansheng, ZHOU Bei, NING Xiaojuan, et al. Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain[J]. Optics Express, 2016, 24(1): 499–515 doi: 10.1364/OE.24.000499
    黄立宏. 高等数学[M]. 第4版, 上海: 复旦大学出版社, 2014: 196–223.

    HUANG Lihong. Higher Mathematics[M]. Fourth Edition, Shanghai: Fudan University Press, 2014: 196–223.
    王宏达. 一种基于混沌系统的新型图像加密算法[J]. 光学技术, 2017, 43(3): 260–266 doi: 10.13741/j.cnki.11-1879/o4.2017.03.015

    WANG Hongda. A new image encryption algorithm based on chaotic system[J]. Optical Technology, 2017, 43(3): 260–266 doi: 10.13741/j.cnki.11-1879/o4.2017.03.015
    VASHISTH S, SINGH H, YADAV A K, et al. Image encryption using fractional Mellin transform, structured phase filters, and phase retrieval[J]. Optik, 2014, 125(18): 5309–5315 doi: 10.1016/j.ijleo.2014.06.068
    ABUTURAB M R. Color information security system using Arnold transform and double structured phase encoding in Gyrator transform domain[J]. Optics & Laser Technology, 2013, 45: 525–532 doi: 10.1016/j.optlastec.2012.05.037
    SINGH P, YADAV A K, SINGH K, et al. Optical image encryption in the fractional Hartley domain, using Arnold transform and singular value decomposition[J]. American Institute of Physics Conference Series, 2017, 1802(1): 020017 doi: 10.1063/1.4973267
    SINGH P, YADAV A K, and SINGH K. Phase image encryption in the fractional Hartley domain using Arnold transform and singular value decomposition[J]. Optics and Lasers in Engineering, 2017, 91: 187–195 doi: 10.1016/j.optlaseng.2016.11.022
    孙力, 黄正谦, 梁立. 基于复合混沌映射与连续扩散的图像加密算法[J]. 计算机工程与设计, 2017, 36(12): 3374–3379 doi: 10.16208/j.issn1000-7024.2017.12.03

    SUN Li, HUANG Zhengqian, and LIANG li. Image encryption algorithm based on compound chaotic map and continuous diffusion[J]. Computer Engineering and Design, 2017, 36(12): 3374–3379 doi: 10.16208/j.issn1000-7024.2017.12.03
    CARNICER A, MONTES-USATEGUI M, ARCOS S, et al. Vulnerability to chosen-cipher attacks of optical encryption schemes based on double random phase keys[J]. Optical Letters, 2005, 30(13): 1644–1646 doi: 10.1364/OL.30.001644
    LI Chengqing, LIN Dongdong, and LÜ Jinhu. Cryptanalyzing an image-scrambling encryption algorithm of pixel bits[J]. IEEE MultiMedia, 2017, 24(3): 64–71 doi: 10.1109/MMUL.2017.3051512
    LI Chengqing. Cracking a hierarchical chaotic image encryption algorithm based on permutation[J]. Signal Processing, 2016, 118: 203–211 doi: 10.1016/j.sigpro.2015.07.008
    PENG Xiang, ZHANG Pan, WEI Hengzheng, et al. Known-plaintext attack on optical encryption based on double random phase keys[J]. Optical Letters, 2006, 31(8): 1044–1046 doi: 10.1364/OL.31.001044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1581) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return