Advanced Search
Volume 41 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
Hongyan WANG, Helei QIU, Jia ZHENG, Bingnan PEI. Visual Tracking Method Based on Reverse Sparse Representation under Illumination Variation[J]. Journal of Electronics & Information Technology, 2019, 41(3): 632-639. doi: 10.11999/JEIT180442
Citation: Hongyan WANG, Helei QIU, Jia ZHENG, Bingnan PEI. Visual Tracking Method Based on Reverse Sparse Representation under Illumination Variation[J]. Journal of Electronics & Information Technology, 2019, 41(3): 632-639. doi: 10.11999/JEIT180442

Visual Tracking Method Based on Reverse Sparse Representation under Illumination Variation

doi: 10.11999/JEIT180442
Funds:  The National Natural Science Foundation of China (61301258, 61271379), China Postdoctoral Science Foundation (2016M590218)
  • Received Date: 2018-05-10
  • Rev Recd Date: 2018-11-08
  • Available Online: 2018-11-19
  • Publish Date: 2019-03-01
  • Focusing on the issue of heavy decrease of object tracking performance induced by illumination variation, a visual tracking method via jointly optimizing the illumination compensation and multi-task reverse sparse representation is proposed. The template illumination is firstly compensated by the developed algorithm, which is based on the average brightness difference between templates and candidates. In what follows, the candidate set is exploited to sparsely represent the templates after illumination compensation. Subsequently, the obtained multiple optimization issues associated with single template can be recast as a multi-task optimization one related to multiple templates, which can be solved by the alternative iteration approach to acquire the optimal illumination compensation coefficient and the sparse coding matrix. Finally, the obtained sparse coding matrix can be exploited to quickly eliminate the unrelated candidates, afterwards the local structured evaluation method is employed to achieve the accurate object tracking. As compared to the existing state-of-the-art algorithms, simulation results show that the proposed algorithm can improve the accuracy and robustness of the object tracking significantly in the presence of heavy illumination variation.

  • loading
  • FRADI H, LUVISON B, and PHAM Q C. Crowd behavior analysis using local mid-level visual descriptors[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2017, 27(3): 589–602. doi: 10.1109/TCSVT.2016.2615443
    YU Gang, LI Chao, and SHANG Zeyuan. Video monitoring method, video monitoring system and computer program product[P]. USA Patent, 9792505, 2017.
    UENG S K and CHEN Guanzhi. Vision based multi-user human computer interaction[J]. Multimedia Tools & Applications, 2016, 75(16): 10059–10076. doi: 10.1007/s11042-015-3061-z
    WU Yi, LIM J, and YANG Minghsuan. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    PAN Zheng, LIU Shuai, and FU Weina. A review of visual moving target tracking[J]. Multimedia Tools & Applications, 2017, 76(16): 16989–17018. doi: 10.1007/s11042-016-3647-0
    薛模根, 刘文琢, 袁广林, 等. 基于编码迁移的快速鲁棒视觉跟踪[J]. 电子与信息学报, 2017, 39(7): 1571–1577. doi: 10.11999/JEIT160966

    XUE Mogen, LIU Wenzhuo, YUAN Guanglin, et al. Fast robust visual tracking based on coding transfer[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1571–1577. doi: 10.11999/JEIT160966
    杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017, 39(3): 634–639. doi: 10.11999/JEIT160467

    YANG Feng and ZHANG Wanying. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics &Information Technology, 2017, 39(3): 634–639. doi: 10.11999/JEIT160467
    BAIG M Z and GOKHALE A V. Object tracking using mean shift algorithm with illumination invariance[C]. Fifth International Conference on Communication Systems and Network Technologies, Gwalior, India, 2015: 550–553.
    NAYAK A and CHAUDHURI S. Automatic illumination correction for scene enhancement and object tracking[J]. Image & Vision Computing, 2006, 24(9): 949–959. doi: 10.1016/j.imavis.2006.02.017
    SILVEIRA G and MALIS E. Real-time visual tracking under arbitrary illumination changes[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1–6.
    WANG Yuru, TANG Xianglong, CUI Qing, et al. Dynamic appearance model for particle filter based visual tracking[J]. Pattern Recognition, 2012, 45(12): 4510–4523. doi: 10.1016/j.patcog.2012.05.010
    BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1830–1837.
    MA Bo, SHEN Jianbing, LIU Yangbiao, et al. Visual tracking using strong classifier and structural local sparse descriptors[J]. IEEE Transactions on Multimedia, 2015, 17(10): 1818–1828. doi: 10.1109/TMM.2015.2463221
    ZHUANG Bohan, LU Huchuan, XIAO Ziyang, et al. Visual tracking via discriminative sparse similarity map[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1872–1881. doi: 10.1109/TIP.2014.2308414
    JIA Xu, LU Huchuan, and YANG Minghsuan. Visual tracking via coarse and fine structural local sparse appearance models[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4555–4564. doi: 10.1109/TIP.2016.2592701
    SUI Yao and ZHANG Li. Robust tracking via locally structured representation[J]. International Journal of Computer Vision, 2016, 119(2): 110–144. doi: 10.1007/s11263-016-0881-x
    ZHANG Tianzhu, GHANEM B, LIU Si, et al. Robust visual tracking via multi-task sparse learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2042–2049.
    MA Bo, HUANG Lianghua, SHEN Jianbing, et al. Visual tracking under motion blur[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5867–5876. doi: 10.1109/TIP.2016.2615812
    ROSS D A, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125–141. doi: 10.1007/s11263-007-0075-7
    POLSON N and SOKOLOV V. Bayesian particle tracking of traffic flows[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 345–356. doi: 10.1109/TITS.2017.2650947
    HE Zhenyu, YI Shuangyan, CHEUNG Y M, et al. Robust object tracking via key patch sparse representation[J]. IEEE Transactions on Cybernetics, 2017, 47(2): 354–364. doi: 10.1109/TCYB.2016.2514714
    ZHANG Kaihua, ZHANG Lei, and YANG Minghsuan. Real-time compressive tracking[C]. European Conference on Computer Vision, Florence, Italy, 2012: 864–877.
    KALAL Z, MATAS J, and MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 49–56.
    HARE S, SAFFARI A, and TORR P H S. Struck: Structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 38(10): 2096–2109. doi: 10.1109/TPAMI.2015.2509974
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (1817) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return