Advanced Search
Volume 41 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
Yanxiong NIU, Mengqi CHEN, He ZHANG. Fast Scene Matching Method Based on Scale Invariant Feature Transform[J]. Journal of Electronics & Information Technology, 2019, 41(3): 626-631. doi: 10.11999/JEIT180440
Citation: Yanxiong NIU, Mengqi CHEN, He ZHANG. Fast Scene Matching Method Based on Scale Invariant Feature Transform[J]. Journal of Electronics & Information Technology, 2019, 41(3): 626-631. doi: 10.11999/JEIT180440

Fast Scene Matching Method Based on Scale Invariant Feature Transform

doi: 10.11999/JEIT180440
  • Received Date: 2018-05-09
  • Rev Recd Date: 2018-09-26
  • Available Online: 2018-11-02
  • Publish Date: 2019-03-01
  • The traditional feature-based image matching method has many problems such as many redundant points and low matching accuracy, which can hardly meet the real-time and robustness requirements. In this regard, a fast scene matching method based on Scale Invariant Feature Transform (SIFT) is proposed. In the feature detection phase, FAST (Features from Accelerated Segment Test) is used to detect characteristics in multi-scale, after then, combining with Difference Of Gauss (DOG) operators to filter characteristics again. From this, the feature search process is simplified. In feature matching phase, the affine transformation model is used to simulate the transformation relation and establish the geometric constraint, to overcome the mismatching because of ignoring the geometric information. The experimental results show that the proposed method is superior to the SIFT in efficiency and precision, also has good robustness to light, blur and scale transformation, achieves scene matching better.

  • loading
  • 张闻宇, 李智, 王勇军, 等. 基于CenSurE-star特征的无人机景象匹配算法[J]. 仪器仪表学报, 2017, 38(2): 462–470. doi: 10.19650/j.cnki.cjai.2017.02.02

    ZHANG Wenyu, LI Zhi, WANG Yongjun, et al. UAV scene matching algorithm based on CenSurE-star feature[J]. Chinese Journal of Scientific Instrument, 2017, 38(2): 462–470. doi: 10.19650/j.cnki.cjai.2017.02.02
    BROWN L G. A survey of image registration techniques[J]. ACM Computing Surveys, 1992, 24(4): 325–376. doi: 10.1145/146370.146374
    BABRI U M, TANVIR M, KHURSHID K, et al. Feature based correspondence: A comparative study on image matching algorithms[J]. International Journal of Advanced Computer Science & Applications, 2016, 7(3): 235–246. doi: 10.14569/IJACSA.2016.070329
    SMITH S M and BRADY J M. SUSAN—A new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23(1): 45–78. doi: 10.1023/A:1007963824710
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110. doi: 10.1023/B:VISI.0000029664.99615.94
    李鹤宇, 王青. 一种具有实时性的SIFT特征提取算法[J]. 宇航学报, 2017, 38(8): 865–871. doi: 10.3873/j.issn.1000-1328.2017.08.011

    LI Heyu and WANG Qing. A real-time SIFT feature extraction algorithm[J]. Journal of Astronautics, 2017, 38(8): 865–871. doi: 10.3873/j.issn.1000-1328.2017.08.011
    BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features[J]. Computer Vision & Image Understanding, 2008, 110(3): 404–417. doi: 10.1016/j.cviu.2007.09.014
    MATAS J, CHUM O, URBAN M, et al. Robust wide-baseline stereo from maximally stable extremal regions[J]. Image & Vision Computing, 2004, 22(10): 761–767. doi: 10.1016/j.imavis.2004.02.006
    ROSTEN E and DRUMMOND T. Machine learning for high-speed corner detection[C] Springer-Verlag European Conference on Computer Vision, Graz, Austria, 2006: 430–443.
    刘妍, 余淮, 杨文, 等. 利用SAR-FAST角点检测的合成孔径雷达图像配准方法[J]. 电子与信息学报, 2017, 39(2): 430–436. doi: 10.11999/JEIT160386

    LIU Yan, YU Huai, YANG Wen, et al. SAR image registration sing SAR-FAST corner detection[J]. Journal of Electronics &Information Technology, 2017, 39(2): 430–436. doi: 10.11999/JEIT160386
    常旭剑, 韩燮, 熊风光, 等. 基于FAST检测及SIFT描述的特征检测算法[J]. 计算机工程与设计, 2015, 36(10): 2749–2753. doi: 10.16208/j.issn1000-7024.2015.10.028

    CHANG Xujian, HAN Xie, XIONG Fengguang, et al. Feature detection based on FAST detection and SIFT description[J]. Computer Engineering &Design, 2015, 36(10): 2749–2753. doi: 10.16208/j.issn1000-7024.2015.10.028
    TONY L. Scale-space theory: A basic tool for analyzing structures at different scales[J]. Journal of Applied Statistics, 1994, 21(1/2): 225–270. doi: 10.1080/757582976
    MIKOLAJCZYK K and SCHMID C. An affine invariant interest point detector[C]. Springer-Verlag European Conference on Computer Vision, Copenhagen, Denmark, 2002: 128–142.
    ELMASHAD S Y and SHOUKRY A. A more robust feature correspondence for more accurate image recognition[C]. IEEE Computer and Robot Vision. Montreal, Canada, 2014: 181–188.
    KANNALA J, RAHTU E, HEIKKILA J, et al. A new method for affine registration of images and point sets[J]. Lecture Notes in Computer Science, 2005, 40(35): 224–234. doi: 10.1007/11499145_25
    王华夏, 程咏梅, 刘楠. 面向山地区域光照变化下的鲁棒景象匹配方法[J]. 航空学报, 2017, 38(10): 188–200. doi: 10.7527/S1000-6893.2017.321101

    WANG Huaxia, CHENG Yongmei, LIU Nan. A robust scene matching method for mountainous regions with illumination variation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 188–200. doi: 10.7527/S1000-6893.2017.321101
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (1766) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return