Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Rong CHAI, Ling WANG, Minglong CHEN, Qianbin CHEN. Joint Clustering and Content Deployment Algorithm for Cellular D2D Communication Based on Delay Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2565-2570. doi: 10.11999/JEIT180408
Citation: Rong CHAI, Ling WANG, Minglong CHEN, Qianbin CHEN. Joint Clustering and Content Deployment Algorithm for Cellular D2D Communication Based on Delay Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2565-2570. doi: 10.11999/JEIT180408

Joint Clustering and Content Deployment Algorithm for Cellular D2D Communication Based on Delay Optimization

doi: 10.11999/JEIT180408
Funds:  The National Science Foundation of China (61571073), The National Science and Technology Specific Project of China (2016ZX03001010-004)
  • Received Date: 2018-05-02
  • Rev Recd Date: 2019-05-21
  • Available Online: 2019-07-19
  • Publish Date: 2019-11-01
  • Due to the limited transmission performance of cellular network and the buffering capabilities of the Base Station (BS), it is very difficult to achieve the Quality of Service (QoS) requirements of multi-user content requests. In this paper, a joint user association and content deployment algorithm is proposed for cellular Device-to-Device (D2D) communication network. Assuming that multiple users located in a specific area may have content requests for the same content, a clustering and content deployment mechanism is presented in order to achieve efficient content acquisition. A joint clustering and content deployment optimization model is formulated to minimize total user service delay, which can be solved by Lagrange partial relaxation, iterative algorithm and Kuhn-Munkres algorithm, and the joint clustering and content deployment optimization strategies can be obtained. Finally, the effectiveness of the proposed algorithm is verified by MATLAB simulation.
  • loading
  • TEHRANI M N, UYSAL M, and YANIKOMEROGLU H. Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions[J]. IEEE Communications Magazine, 2014, 52(5): 86–92. doi: 10.1109/MCOM.2014.6815897
    ASADI A, WANG Qing, and MANCUSO V. A survey on device-to-device communication in cellular networks[J]. IEEE Communications Surveys & Tutorials, 2014, 16(4): 1801–1819. doi: 10.1109/COMST.2014.2319555
    FODOR G, DAHLMAN E, MILDH G, et al. Design aspects of network assisted device-to-device communications[J]. IEEE Communications Magazine, 2012, 50(3): 170–177. doi: 10.1109/MCOM.2012.6163598
    ZHU Huiling. Radio resource allocation for OFDMA systems in high speed environments[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(4): 748–759. doi: 10.1109/JSAC.2012.120509
    MA Ruofei, XIA Nian, CHEN H H, et al. Mode selection, radio resource allocation, and power coordination in D2D communications[J]. IEEE Wireless Communications, 2017, 24(3): 112–121. doi: 10.1109/MWC.2017.1500385WC
    WEN Dingzhu, YU Guanding, and XU Lukai. Energy-efficient mode selection and power control for device-to-device communications[C]. Proceedings of 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1–7. doi: 10.1109/WCNC.2016.7565099.
    PENDA D D, FU Liqun, and JOHANSSON M. Mode selection for energy efficient D2D communications in dynamic TDD systems[C]. Proceedings of 2015 IEEE International Conference on Communications, London, UK, 2015: 5404–5409. doi: 10.1109/ICC.2015.7249183.
    KLUGEL M and KELLERER W. Leveraging the D2D-gain: Resource efficiency based mode selection for device-to-device communication[C]. Proceedings of 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–7. doi: 10.1109/GLOCOM.2016.7841953.
    WANG Kan, YU F R, and LI Hongyan. Information-centric virtualized cellular networks with device-to-device communications[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 9319–9329. doi: 10.1109/TVT.2016.2518658
    PAN Yijin, PAN Cunhua, ZHU Huiling, et al. On consideration of content preference and sharing willingness in D2D assisted offloading[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(4): 978–993. doi: 10.1109/JSAC.2017.2680938
    LI Xiaoshuai, MA Lin, SHANKARAN R, et al. Joint mode selection and proportional fair scheduling for D2D communication[C]. Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, Canada, 2017: 1–6. doi: 10.1109/PIMRC.2017.8292254.
    LIBERTI L and PANTELIDES C C. An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms[J]. Journal of Global Optimization, 2006, 36(2): 161–189. doi: 10.1007/s10898-006-9005-4
    LEMARÉCHAL C. S. Boyd, VANDENBERGHE L. Convex optimization[J]. European Journal of Operational Research, 2006, 170(1): 326–327. doi: 10.1016/j.ejor.2005.02.002.
    HUANG Yifei, NASIR A A, DURRANI S, et al. Mode selection, resource allocation, and power control for D2D-enabled two-tier cellular network[J]. IEEE Transactions on Communications, 2016, 64(8): 3534–3547. doi: 10.1109/TCOMM.2016.2580153
    JIANG Wei, FENG Gang, and QIN Shuang. Optimal cooperative content caching and delivery policy for heterogeneous cellular networks[J]. IEEE Transactions on Mobile Computing, 2017, 16(5): 1382–1393. doi: 10.1109/TMC.2016.2597851
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (2780) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return