Advanced Search
Volume 41 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
Haoran ZHU, Yunqing LIU, Wenying ZHANG. Night-vision Image Fusion Based on Intensity Transformation and Two-scale Decomposition[J]. Journal of Electronics & Information Technology, 2019, 41(3): 640-648. doi: 10.11999/JEIT180407
Citation: Haoran ZHU, Yunqing LIU, Wenying ZHANG. Night-vision Image Fusion Based on Intensity Transformation and Two-scale Decomposition[J]. Journal of Electronics & Information Technology, 2019, 41(3): 640-648. doi: 10.11999/JEIT180407

Night-vision Image Fusion Based on Intensity Transformation and Two-scale Decomposition

doi: 10.11999/JEIT180407
  • Received Date: 2017-05-02
  • Rev Recd Date: 2018-10-18
  • Available Online: 2018-10-31
  • Publish Date: 2019-03-01
  • In order to achieve more suitable night vision fusion images for human perception, a novel night-vision image fusion algorithm is proposed based on intensity transformation and two-scale decomposition. Firstly, the pixel value from the infrared image is used as the exponential factor to achieve intensity transformation of the visible image, so that the task of infrared-visible image fusion can be transformed into the merging of homogeneous images. Secondly, the enhanced result and the original visible image are decomposed into base and detail layers through a simple average filter. Thirdly, the detail layers are fused by the visual weight maps. Finally, the fused image is reconstructed by synthesizing these results. The fused image is more suitable for the visual perception, because the proposed method presents the result in the visual spectrum band. Experimental results show that the proposed method outperforms obviously the other five methods. In addition, the computation time of the proposed method is less than 0.2 s, which meet the real-time requirements. In the fused result, the details of the background are clear while the objects with high temperature variance are highlighted as well.

  • loading
  • 冯鑫, 张建华, 胡开群, 等. 基于变分多尺度的红外与可见光图像融合[J]. 电子学报, 2018, 46(3): 680–687. doi: 10.3969/j.issn.0372-2112.2018.03.025

    FENG Xin, ZHANG Jianhua, HU Kaiqun, et al. The infrared and visible image fusion method based on variational multiscale[J]. Acta Electronica Sinica, 2018, 46(3): 680–687. doi: 10.3969/j.issn.0372-2112.2018.03.025
    江泽涛, 吴辉, 周哓玲. 基于改进引导滤波和双通道脉冲发放皮层模型的红外与可见光图像融合算法[J]. 光学学报, 2018, 38(2): 112–120. doi: 10.3788/aos201838.0210002

    JIANG Zetao, WU Hui, and ZHOU Xiaoling. Infrared and visible image fusion algorithm based on improved guided filtering and dual-channel spiking cortical model[J]. Acta Optica Sinica, 2018, 38(2): 112–120. doi: 10.3788/aos201838.0210002
    LI Jinxi, ZHOU Dingfu, YUAN Sheng, et al. Modified image fusion technique to remove defocus noise in optical scanning holography[J]. Optics Communications, 2018, 407(15): 234–238. doi: 10.1016/j.optcom.2017.08.057
    YIN Xiang and MA Jun. Image fusion method based on entropy rate segmentation and multi-scale decomposition[J]. Laser & Optoelectronics Progress, 2018, 55(1): 1–8. doi: 10.3788/LOP55.011011
    LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2013, 22(7): 2864–2875. doi: 10.1109/TIP.2013.2244222
    LEWIS J J, O'CALLAGHAN R J, NIKOLOV S G, et al. Pixel- and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119–130. doi: 10.1016/j.inffus.2005.09.006
    KUMAR B K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193–1204. doi: 10.1007/s11760-013-0556-9
    谢伟, 周玉钦, 游敏. 融合梯度信息的改进引导滤波[J]. 中国图象图形学报, 2016, 21(9): 1119–1126. doi: 10.11834/jig.20160901

    XIE Wei, ZHOU Yuqin, and YOU Min. Improved guided image filtering integrated with gradient information[J]. Journal of Image and Graphics, 2016, 21(9): 1119–1126. doi: 10.11834/jig.20160901
    ZUO Yujia, LIU Jinghong, BAI Guanbing, et al. Airborne infrared and visible image fusion combined with region segmentation[J]. Sensors, 2017, 17(5): 1–15. doi: 10.3390/s17051127
    TAO Li, NGO Hau, ZHANG Ming, et al. A multisensory image fusion and enhancement system for assisting drivers in poor lighting conditions[C]. Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop, Washington, USA, 2005: 106–113.
    CHANDRASHEKAR L and SREEDEVI A. Advances in biomedical imaging and image fusion[J]. International Journal of Computer Applications, 2018, 179(24): 1–9. doi: 10.5120/ijca2018912307
    LIU Yu, CHEN Xun, PENG Hu, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36(7): 191–207. doi: 10.1016/j.inffus.2016.12.001
    刘峰, 沈同圣, 马新星. 交叉双边滤波和视觉权重信息的图像融合[J]. 仪器仪表学报, 2017, 38(4): 1005–1013. doi: 10.3969/j.issn.0254-3087.2017.04.027

    LIU Feng, SHEN Tongsheng, and MA Xinxing. Image fusion via cross bilateral filter and visual weight information[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 1005–1013. doi: 10.3969/j.issn.0254-3087.2017.04.027
    ZHAO Jufeng, FENG Huajun, XU Zhihai, et al. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition[J]. Optics Communications, 2013, 287(2): 45–52. doi: 10.1016/j.optcom.2012.08.070
    LIU Zhaodong, CHAI Yi, YIN Hongpeng, et al. A novel multi-focus image fusion approach based on image decomposition[J]. Information Fusion, 2017, 35(5): 102–116. doi: 10.1016/j.inffus.2016.09.007
    孙彦景, 杨玉芬, 刘东林, 等. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报, 2016, 38(1): 127–134. doi: 10.11999/JEIT150616

    SUN Yanjing, YANG Yufen, LIU Donglin, et al. Multiple-scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics &Information Technology, 2016, 38(1): 127–134. doi: 10.11999/JEIT150616
    LI Jun, SONG Minghui, and PENG Yuanxi. Infrared and visible image fusion based on robust principal component analysis and compressed sensing[J]. Infrared Physics & Technology, 2018, 89(3): 129–139. doi: 10.1016/j.infrared.2018.01.003
    刘国军, 高丽霞, 陈丽奇. 广义平均的全参考型图像质量评价池化策略[J]. 光学精密工程, 2017, 25(3): 742–748. doi: 10.3788/OPE.20172503.0742

    LIU Guojun, GAO Lixia, and CHEN Liqi. Pool strategy for full-reference IQA via general means[J]. Optics and Precision Engineering, 2017, 25(3): 742–748. doi: 10.3788/OPE.20172503.0742
    曲怀敬, 李健. 基于混合统计建模的图像融合[J]. 计算机辅助设计与图形学学报, 2017, 29(5): 838–845. doi: 10.3969/j.issn.1003-9775.2017.05.007

    QU Huaijing and LI Jian. Image fusion based on statistical mixture modeling[J]. Journal of Computer-Aided Design &Computer Graphics, 2017, 29(5): 838–845. doi: 10.3969/j.issn.1003-9775.2017.05.007
    朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12): 213–221. doi: 10.3788/gzxb20174612.1210002

    ZHU Pan, LIU Zeyang, and HUANG Zhanhua. Infrared polarization and intensity image fusion based on dual-tree complex wavelet transform and sparse representation[J]. Acta Photonica Sinica, 2017, 46(12): 213–221. doi: 10.3788/gzxb20174612.1210002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (2389) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return