Citation: | Chen SONG, Liangjiang ZHOU, Yirong WU, Chibiao DING. An Estimation Method of Rotation Frequency of Unmanned Aerial Vehicle Based on Auto-correlation and Cepstrum[J]. Journal of Electronics & Information Technology, 2019, 41(2): 255-261. doi: 10.11999/JEIT180399 |
Accurately estimating rotor rotation frequency of Unmanned Aerial Vehicle (UAV) is of great significance for UAV detection and recognition. For the UAV target echo model of LFMCW (Linear Frequency Modulated Continuous Wave) radar, this paper proposes an auto-correlation and cepstrum to estimate the rotor rotation frequency of UAV, which derives the mapping relationship between the rotor rotation frequency of UAV and the periodic delay in the radar echo cepstrum output, and more effectively estimates the rotor frequency of multi-rotor UAV by weighted equilibrium, making up for the shortages of traditional methods. The effectiveness of the method is verified by simulation and real scene experiments.
HOFFMANN F, RITCHIE M, FIORANELLI, et al. Micro-Doppler based detection and tracking of UAVs with multistatic radar[C]. Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485236.
|
CHEN Xinlin, XIAO Guangzong, XIONG Wei, et al. Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect[J]. Optical Engineering, 2018, 57(3): 036103. doi: 10.1117/1.OE.57.3.036103
|
ZHANG Wenyu and LI Gang. Detection of multiple micro-drones via cadence velocity diagram analysis[J]. Electronics Letters, 2018, 54(7): 441–443. doi: 10.1049/el.2017.4317
|
黄小红, 贺夏, 辛玉林, 等. 基于时频特征的低分辨雷达微动多目标分辨方法[J]. 电子与信息学报, 2010, 32(10): 2342–2347. doi: 10.3724/SP.J.1146.2009.0314
HUANG Xiaohong, HE Xia, XIN Yulin, et al. Resolving multiple targets with micro-motions based on time-frequency feature with low-resolution radar[J]. Jounal of Electronics &Information Technology, 2010, 32(10): 2342–2347. doi: 10.3724/SP.J.1146.2009.0314
|
CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace & Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
|
ANDERSON M G and ROGERS R L. Micro-Doppler analysis of multiple frequency continuous wave radar signatures[C]. Defense and Security Symposium, Orlando, USA, 2007. 6547: 65470A-65470A-10. doi: 10.1117/12.719800.
|
王璐, 刘宏伟. 基于时频图的微动目标运动参数提取和特征识别的方法[J]. 电子与信息学报, 2010, 32(8): 1812–1817. doi: 10.3724/SP.J.1146.2009.01127
WANG Lu and LIU Hongwei. Method for micro-motion target recognition and motion parameter extraction based on time-frequency analysis[J]. Jounal of Electronics &Information Technology, 2010, 32(8): 1812–1817. doi: 10.3724/SP.J.1146.2009.01127
|
SPARR T and KRANE B. Micro-Doppler analysis of vibrating targets in SAR[J]. IEE Proceedings: Radar, Sonar and Navigation, 2003, 150(4): 277–283. doi: 10.1049/ip-rsn:20030697
|
SETLUR P, AMIN M, and THAYAPARAN T. Micro-doppler signal estimation for vibrating and rotating targets[C]. IEEE Eighth International Symposium on Signal Processing and ITS Applications, Sydney, Australia, 2005: 639–642. doi: 10.1109/ISSPA.2005.1581019.
|
YANG Yang, PENG Zhike, DONG Xiaojin, et al. General parameterized time-frequency transform[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2751–2764. doi: 10.1109/TSP.2014.2314061
|
ANGRISANI L, D'ARCO M, MORIELLO R S L, et al. Warblet transform based method for instantaneous frequency measurement on multicomponent signals[C]. Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition. Montreal, Canada. 2004: 500–508. doi: 10.1109/FREQ.2004.1418509.
|
VISHWAKARMA S and RAM S S. Detection of multiple movers based on single channel source separation of their micro-Dopplers[J]. IEEE Transactions on Aerospace & Electronic Systems, 2018, 54(1): 159–169. doi: 10.1109/TAES.2017.2739958
|
KANG Wenwu, ZHANG Yunhua, and DONG Xiao. Micro-Doppler effect removal for ISAR imaging based on bivariate variational mode decomposition[J]. IET Radar Sonar & Navigation, 2018, 12(1): 74–81. doi: 10.1049/iet-rsn.2017.0104
|
LIU Yixing, LI Xiang, and ZHUANG Zuwen. Estimation of micro-motion parameters based on micro-Doppler[J]. IET Signal Processing, 2010, 4(3): 213–217. doi: 10.1049/iet-spr.2009.0042
|
STANKOVIC L, DJUROVIC I, and THAYAPARAN T. Separation of target rigid body and micro-Doppler effects in ISAR imaging[J]. IEEE Transactions on Aerospace & Electronic Systems, 2006, 42(4): 1496–1506. doi: 10.1109/TAES.2006.314590
|
THAYAPARAN T, STANKOVIĆ L, and DJUROVIĆ I. Micro-Doppler-based target detection and feature extraction in indoor and outdoor environments[J]. Journal of the Franklin Institute, 2008, 345(6): 700–722. doi: 10.1016/j.jfranklin.2008.01.003
|
CAI Chengjie, LIU Weixian, FU Junshan, et al. Empirical mode decomposition of micro-Doppler signature[C]. IEEE International Radar Conference, Arlington, Virginia, USA, 2005: 895–899. doi: 10.1109/RADAR.2005.1435954.
|
LAI Caiping, RUAN Quan, and NARAYANAN R M. Hilbert-Huang Transform (HHT) processing of through-wall noise radar data for human activity characterization[C]. IEEE Workshop on Signal Processing Applications for Public Security and Forensics, Washington, DC, USA, 2007: 1–6.
|
THAYAPARAN T, ABROL S, and QIAN S. Micro-Doppler analysis of rotating target in SAR[R]. Defence Research and Development Canada Ottawa (ONTARIO), 2005.
|
WALTER M, SHUTIN D, and DAMMANN A. Time-variant Doppler PDFs and characteristic functions for the vehicle-to-vehicle channel[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 10748–10763. doi: 10.1109/TVT.2017.2722229
|
FUHRMANN L, BIALLAWONS O, KLARE J, et al. Micro-Doppler analysis and classification of UAVs at Ka band[C]. 2017 18th IEEE International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–9. doi: 10.23919/IRS.2017.8008142.
|
LUCA P, PAOLO C, and FABRIZIO B. Radar micro-Doppler mini-UAV classification using spectrograms and cepstrograms[J]. International Journal of Microwave & Wireless Technologies, 2015, 7(3/4): 469–477. doi: 10.1017/S1759078715001002
|
芦俊, 张颜岭, 张凤园. 一种被动声呐线谱背景均衡算法[J]. 声学与电子工程, 2016(3): 20–22.
LU Jun, ZHANG Yanling, and Zhang Fengyuan. A passive sonar line spectrum background equalization algorithm[J]. Acoustics and Electronic Engineering, 2016(3): 20–22.
|