Hongqi ZHANG, Rui HUANG, Dexian CHANG. A Collaborative Mapping Method for Service Chain Based on Matching Game[J]. Journal of Electronics & Information Technology, 2019, 41(2): 385-393. doi: 10.11999/JEIT180385
Citation:
Hongqi ZHANG, Rui HUANG, Dexian CHANG. A Collaborative Mapping Method for Service Chain Based on Matching Game[J]. Journal of Electronics & Information Technology, 2019, 41(2): 385-393. doi: 10.11999/JEIT180385
Hongqi ZHANG, Rui HUANG, Dexian CHANG. A Collaborative Mapping Method for Service Chain Based on Matching Game[J]. Journal of Electronics & Information Technology, 2019, 41(2): 385-393. doi: 10.11999/JEIT180385
Citation:
Hongqi ZHANG, Rui HUANG, Dexian CHANG. A Collaborative Mapping Method for Service Chain Based on Matching Game[J]. Journal of Electronics & Information Technology, 2019, 41(2): 385-393. doi: 10.11999/JEIT180385
Considering that it is difficult to balance efficiency and resource utilization of Service Chain (SC) mapping problem in Software Defined Network (SDN)/Network Function Virtualization (NFV) environment, this paper proposes a collaborative mapping method for SC based on matching game. Firstly, it defines a SC mapping model named MUSCM to maximize the utility of network resources. Secondly, it divides the SC mapping problem into Virtual Network Function (VNF) deployment and connection parts. As for the VNF deployment part, an algorithm is designed to collaborate the selection of the SC and the service node based on many-to-one matching game, improving the mapping efficiency of SC and utilization of physical resource effectively. On the basis of it, an algorithm is designed based on segment routing strategy to accomplish the traffic steering between VNF instances to finish the VNF connection part, reducing the link transmission delay effectively. The experiment result shows that, compared with the classical algorithm, this algorithm ensures the mapping request received rate, and at the same time, it reduces the average transmission delay of the service chain and improves the physical resources utilization of the system effectively.
基于服务链映射的合并策略[4](consolidation policy),每个服务节点n偏好部署尽可能多的VNF实例以提升节点的资源利用率,但这并不能保证各服务节点的资源碎片化程度最小。为此,采用最佳适应算法[14](Best Fit Algorithm, BFA),对服务链c中的VNF实例资源需求进行从大到小排序,按照贪心启发式思想优先选择使得服务节点剩余资源空间最小的VNF实例,构成服务节点匹配偏好表:
算法3 博弈选择算法 输入:构成服务链c的VNF实例集合Rc,服务节点集合NS 输出:服务链和服务节点的平稳匹配结果 根据输入初始化; if 服务链c是不饱和的 do for each fp in Rc do n←get highest rank in SC(NS); if (volIkn>dIkfp)&&(fpinNS(SC)) then 将fp匹配给n; volIkn=volIkn−dIkfp; end else 找出所有满足fp≻nfp′的fp′; 拒绝所有fp′并更新服务节点n的资源; volIkn=volIkn−dIkfp; 将fp′从服务节点映射偏好表NS(SC)中移除; 将n从服务链映射偏好表SC(NS)中移除; end end for 输出匹配结果; else return
KREUTZ D, RAMOS F M V, VERÍSSIMO P E, et al. Software-defined networking: A comprehensive survey[J]. Proceedings of the IEEE, 2015, 103(1): 14–76. doi: 10.1109/JPROC.2014.2371999
MIJUMBI R, SERRAT J, GORRICHO J L, et al. Network function virtualization: State-of-the-art and research challenges[J]. IEEE Communications Surveys and Tutorials, 2017, 18(1): 236–262. doi: 10.1109/COMST.2015.2477041
OCAMPO A F, GIL-HERRERA J, ISOLANI P H, et al. Optimal service function chain composition in network functions virtualization[C]. International Conference on Autonomous Infrastructure, Management and Security, Zurich, Switzerland, 2017: 62–76.
LI Yong and CHEN Min. Software-defined network function virtualization: A survey[J]. IEEE Access, 2015, 3: 2542–2553. doi: 10.1109/ACCESS.2015.2499271
BHAMARE D, JAIN R, SAMAKA M, et al. A survey on service function chaining[J]. Journal of Network and Computer Applications, 2016, 75: 138–155. doi: 10.1016/j.jnca.2016.09.001
DWARAKI A and WOLF T. Adaptive service-chain routing for virtual network functions in software-defined networks[C]. The Workshop on Hot Topics in Middleboxes and Network Function Virtualization, Salvador, Brazil, 2016: 32–37.
XIONG Gang, HU Yunxiang, LAN Julong, et al. A mechanism for configurable network service chaining and its implementation[J]. KSII Transactions on Internet and Information Systems, 2016, 10(8): 3701–3727. doi: 10.3837/tiis.2016.08.016
SEKAR V, EGI N, RATNASAMY S, et al. Design and implementation of a consolidated middlebox architecture[C]. Usenix Conference on Networked Systems Design and Implementation, Lombard, Italy, 2012: 24–34.
KUO Tunwei, LIOU Bangheng, LIN Chingju, et al. Deploying chains of virtualnetwork functions: On the relation between link and server usage[C]. IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9.
ZHANG Qixia, XIAO Yikai, LIU Fangming, et al. Joint optimization of chain placement and request scheduling for network function virtualization[C]. IEEE International Conference on Distributed Computing Systems, Atlanta, USA, 2017: 731–741.
GALE D and SHAPLEY L S. College admissions and the stability of marriage[J]. American Mathematical Monthly, 1962, 69(1): 9–15. doi: 10.4169/amer.math.monthly.120.05.386
XU Hong and LI Baochun. Anchor: A versatile and efficient framework for resource management in the cloud[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(6): 1066–1076. doi: 10.1109/TPDS.2012.308
ZHANG Yan and ANSARI N. Heterogeneity aware dominant resource assistant heuristics for virtual machine consolidation[C]. Global Communications Conference, Austin, USA, 2014: 1297–1302.
CORMEN T T, LEISERSON C E, RIVEST R L, et al. Introduction to Algorithms[M]. McGraw, USA, MIT Press, 2002: 145–167.
MANLOVE D. Algorithmics of Matching under Preferences[M]. Glasgow, UK, World Scientific Pub. Co, 2013: 266–278.
FILSFILS C, NAINAR N K, PIGNATARO C, et al. The segment routing architecture[C]. Global Communications Conference, San Diego, USA, 2015: 1–6.
CALVERT K L and BHATTACHARJEE S. How to model an internetwork[C]. IEEE Conference of Computer Societies, San Francisco, USA, 1996: 594–602.
Hongqi ZHANG, Rui HUANG, Dexian CHANG. A Collaborative Mapping Method for Service Chain Based on Matching Game[J]. Journal of Electronics & Information Technology, 2019, 41(2): 385-393. doi: 10.11999/JEIT180385
Hongqi ZHANG, Rui HUANG, Dexian CHANG. A Collaborative Mapping Method for Service Chain Based on Matching Game[J]. Journal of Electronics & Information Technology, 2019, 41(2): 385-393. doi: 10.11999/JEIT180385
算法3 博弈选择算法 输入:构成服务链c的VNF实例集合Rc,服务节点集合NS 输出:服务链和服务节点的平稳匹配结果 根据输入初始化; if 服务链c是不饱和的 do for each fp in Rc do n←get highest rank in SC(NS); if (volIkn>dIkfp)&&(fpinNS(SC)) then 将fp匹配给n; volIkn=volIkn−dIkfp; end else 找出所有满足fp≻nfp′的fp′; 拒绝所有fp′并更新服务节点n的资源; volIkn=volIkn−dIkfp; 将fp′从服务节点映射偏好表NS(SC)中移除; 将n从服务链映射偏好表SC(NS)中移除; end end for 输出匹配结果; else return