Advanced Search
Volume 41 Issue 2
Jan.  2019
Turn off MathJax
Article Contents
Hongqi ZHANG, Rui HUANG, Dexian CHANG. A Collaborative Mapping Method for Service Chain Based on Matching Game[J]. Journal of Electronics & Information Technology, 2019, 41(2): 385-393. doi: 10.11999/JEIT180385
Citation: Hongqi ZHANG, Rui HUANG, Dexian CHANG. A Collaborative Mapping Method for Service Chain Based on Matching Game[J]. Journal of Electronics & Information Technology, 2019, 41(2): 385-393. doi: 10.11999/JEIT180385

A Collaborative Mapping Method for Service Chain Based on Matching Game

doi: 10.11999/JEIT180385
Funds:  The National 863 Program of China (2012AA012704), The Zhengzhou Science and Technology Talents Project (131PLJRC644)
  • Received Date: 2018-04-25
  • Rev Recd Date: 2018-09-11
  • Available Online: 2018-09-25
  • Publish Date: 2019-02-01
  • Considering that it is difficult to balance efficiency and resource utilization of Service Chain (SC) mapping problem in Software Defined Network (SDN)/Network Function Virtualization (NFV) environment, this paper proposes a collaborative mapping method for SC based on matching game. Firstly, it defines a SC mapping model named MUSCM to maximize the utility of network resources. Secondly, it divides the SC mapping problem into Virtual Network Function (VNF) deployment and connection parts. As for the VNF deployment part, an algorithm is designed to collaborate the selection of the SC and the service node based on many-to-one matching game, improving the mapping efficiency of SC and utilization of physical resource effectively. On the basis of it, an algorithm is designed based on segment routing strategy to accomplish the traffic steering between VNF instances to finish the VNF connection part, reducing the link transmission delay effectively. The experiment result shows that, compared with the classical algorithm, this algorithm ensures the mapping request received rate, and at the same time, it reduces the average transmission delay of the service chain and improves the physical resources utilization of the system effectively.

  • loading
  • KREUTZ D, RAMOS F M V, VERÍSSIMO P E, et al. Software-defined networking: A comprehensive survey[J]. Proceedings of the IEEE, 2015, 103(1): 14–76. doi: 10.1109/JPROC.2014.2371999
    MIJUMBI R, SERRAT J, GORRICHO J L, et al. Network function virtualization: State-of-the-art and research challenges[J]. IEEE Communications Surveys and Tutorials, 2017, 18(1): 236–262. doi: 10.1109/COMST.2015.2477041
    OCAMPO A F, GIL-HERRERA J, ISOLANI P H, et al. Optimal service function chain composition in network functions virtualization[C]. International Conference on Autonomous Infrastructure, Management and Security, Zurich, Switzerland, 2017: 62–76.
    LI Yong and CHEN Min. Software-defined network function virtualization: A survey[J]. IEEE Access, 2015, 3: 2542–2553. doi: 10.1109/ACCESS.2015.2499271
    BHAMARE D, JAIN R, SAMAKA M, et al. A survey on service function chaining[J]. Journal of Network and Computer Applications, 2016, 75: 138–155. doi: 10.1016/j.jnca.2016.09.001
    DWARAKI A and WOLF T. Adaptive service-chain routing for virtual network functions in software-defined networks[C]. The Workshop on Hot Topics in Middleboxes and Network Function Virtualization, Salvador, Brazil, 2016: 32–37.
    XIONG Gang, HU Yunxiang, LAN Julong, et al. A mechanism for configurable network service chaining and its implementation[J]. KSII Transactions on Internet and Information Systems, 2016, 10(8): 3701–3727. doi: 10.3837/tiis.2016.08.016
    SEKAR V, EGI N, RATNASAMY S, et al. Design and implementation of a consolidated middlebox architecture[C]. Usenix Conference on Networked Systems Design and Implementation, Lombard, Italy, 2012: 24–34.
    KUO Tunwei, LIOU Bangheng, LIN Chingju, et al. Deploying chains of virtualnetwork functions: On the relation between link and server usage[C]. IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9.
    ZHANG Qixia, XIAO Yikai, LIU Fangming, et al. Joint optimization of chain placement and request scheduling for network function virtualization[C]. IEEE International Conference on Distributed Computing Systems, Atlanta, USA, 2017: 731–741.
    GALE D and SHAPLEY L S. College admissions and the stability of marriage[J]. American Mathematical Monthly, 1962, 69(1): 9–15. doi: 10.4169/amer.math.monthly.120.05.386
    XU Hong and LI Baochun. Anchor: A versatile and efficient framework for resource management in the cloud[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(6): 1066–1076. doi: 10.1109/TPDS.2012.308
    ZHANG Yan and ANSARI N. Heterogeneity aware dominant resource assistant heuristics for virtual machine consolidation[C]. Global Communications Conference, Austin, USA, 2014: 1297–1302.
    CORMEN T T, LEISERSON C E, RIVEST R L, et al. Introduction to Algorithms[M]. McGraw, USA, MIT Press, 2002: 145–167.
    MANLOVE D. Algorithmics of Matching under Preferences[M]. Glasgow, UK, World Scientific Pub. Co, 2013: 266–278.
    FILSFILS C, NAINAR N K, PIGNATARO C, et al. The segment routing architecture[C]. Global Communications Conference, San Diego, USA, 2015: 1–6.
    CALVERT K L and BHATTACHARJEE S. How to model an internetwork[C]. IEEE Conference of Computer Societies, San Francisco, USA, 1996: 594–602.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(7)

    Article Metrics

    Article views (1772) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return