Citation: | Peizhong XIE, Rui SUN, Ting LI. Hybrid Precoding Algorithm Based on Successive Interference Cancellation for Millimeter Wave MIMO Systems[J]. Journal of Electronics & Information Technology, 2019, 41(2): 409-416. doi: 10.11999/JEIT180379 |
This paper investigates the design of hybrid analog and digital precoder and combiner for multi-user millimeter wave MIMO systems. Considering the problem of signal interference between multiple users due to diffuse scattering of signal propagation, a robust hybrid precoding algorithm based on Successive Interference Cancellation (SIC) is proposed. By deducing the orthogonal decomposition formula of the channel matrix to eliminate the interference from the known users’ signals, the multi-user links optimization problem with nonconvex constraints can be decompose into multiple single-user link optimization problems. The phase extraction algorithm is then used to search each user’s optimal transmission link one by one, and the multi-user hybrid precoding matrix is obtained in combination with Minimum Mean Square Error (MMSE) criterion. Simulation results show that the proposed algorithm has significant performance advantages compared with the existing hybrid precoding algorithms under severe interference conditions.
ANDREWS J G, BUZZI S, WAN C, et al. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065–1082. doi: 10.1109/JSAC.2014.2328098
|
RAPPAPORT T S, SUN S, MAYZUS R, et al. Millimeter wave mobile communications for 5G cellular: It will work![J]. IEEE Access, 2013, 1(1): 335–349. doi: 10.1109/ACCESS.2013.2260813
|
BAI Tiangang and HEATH R W. Coverage and rate analysis for millimeter-wave cellular networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 1100–1114. doi: 10.1109/TWC.2014.2364267
|
RUSEK F, PERSSON D, and LAU B K. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40–60. doi: 10.1109/MSP.2011.2178495
|
AMADORI P V and MASOUROS C. Interference-driven antenna selection for massive multiuser MIMO[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 5944–5958. doi: 10.1109/TVT.2015.2477457
|
AMADORI P V and MASOUROS C. Large scale antenna selection and precoding for interference exploitation[J]. IEEE Transactions on Communications, 2017, 65(10): 4529–4542. doi: 10.1109/TCOMM.2017.2720733
|
VENKATESWARAN V and van der VEEN A J. Analog beamforming in MIMO communications with phase shift networks and online channel estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4131–4143. doi: 10.1109/TSP.2010.2048321
|
GHOLAM F, VIA J, and SANTAMARIA I. Beamforming design for simplified analog antenna combining architectures[J]. IEEE Transactions on Vehicular Technology, 2011, 60(5): 2373–2378. doi: 10.1109/TVT.2011.2142205
|
AYACH O E, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513. doi: 10.1109/TWC.2014.011714.130846
|
YU Xianghao, SHEN J C, ZHANG Jun, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 485–500. doi: 10.1109/JSTSP.2016.2523903
|
ALKHATEEB A, LEUS G, and HEATH R W. Limited feedback hybrid precoding for multi-user millimeter wave systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 6481–6494. doi: 10.1109/TWC.2015.2455980
|
NGUYEN D H N, LE L B, and LE-NGOC T. Hybrid MMSE precoding for mmWave multiuser MIMO systems[C]. 2016 IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 2016: 1–6.
|
唐俊林, 曾媛, 岳光荣, 等. 60 GHz毫米波通信中贪婪迭代的波束成形方法[J]. 信号处理, 2017, 33(5): 669–675. doi: 10.16798/j.issn.1003-0530.2017.05.003
TANG Junlin, ZENG Yuan, YUE Guangrong, et al. Greedy iterative beamforming method in 60 GHz millimeter wave communication[J]. Journal of Signal Processing, 2017, 33(5): 669–675. doi: 10.16798/j.issn.1003-0530.2017.05.003
|
LIANG Le, XU Wei, and DONG Xiaodai. Low-complexity hybrid precoding in massive multiuser MIMO systems[J]. IEEE Wireless Communications Letters, 2014, 3(6): 653–656. doi: 10.1109/LWC.2014.2363831
|
黄天宇, 马林华, 胡星, 等. 一种实用的毫米波大规模MIMO混合预编码算法[J]. 电子与信息学报, 2017, 39(8): 1788–1795. doi: 10.11999/JEIT161211
HUANG Tianyu, MA Linhua, HU Xing, et al. Practical hybrid precoding algorithm for millimeter wave massive MIMO[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1788–1795. doi: 10.11999/JEIT161211
|
CHEN Jiaxuan, ZHAO Peiyao, WANG Zhaocheng, et al. Enhanced beam selection for multi-user mm-wave massive MIMO systems[J]. Electronics Letters, 2016, 52(14): 1268–1270. doi: 10.1049/el.2016.0771
|
RAPPAPORT T S, MACCARTNEY G R, SAMIMI M K, et al. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design[J]. IEEE Transactions on Communications, 2015, 63(9): 3029–3056. doi: 10.1109/TCOMM.2015.2434384
|
李元稳, 何世文, 李春国, 等. 多用户毫米波MIMO系统中基于信道互易性的混合模数预编码算法[J]. 信号处理, 2016, 32(8): 922–930. doi: 10.16798/j.issn.1003-0530.2016.08.06
LI Yuanwen, HE Shiwen, LI Chunguo, et al. Hybrid analog and digital precoding algorithm based on channel reciprocity for multi-user millimeter wave MIMO systems[J]. Journal of Signal Processing, 2016, 32(8): 922–930. doi: 10.16798/j.issn.1003-0530.2016.08.06
|
GAO Xinyu, DAI Linglong, HAN Shuangfeng, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4): 998–1009. doi: 10.1109/JSAC.2016.2549418
|
ZHANG Didi, WANG Yafeng, LI Xuehua, et al. Hybridly connected structure for hybrid beamforming in mmWave massive MIMO systems[J]. IEEE Transactions on Communications, 2018, 66(2): 662–674. doi: 10.1109/TCOMM.2017.2756882
|
束锋, 杨淑萍, 许正文, 等. 毫米波无线通信系统混合波束成形综述[J]. 数据采集与处理, 2017, 32(3): 454–462. doi: 10.16337/j.1004-9037.2017.03.003
SHU Feng, YANG Shuping, XU Zhengwen, et al. Overview of hybrid beamforming for millimeter wave systems[J]. Journal of Data Acquisition and Processing, 2017, 32(3): 454–462. doi: 10.16337/j.1004-9037.2017.03.003
|