Advanced Search
Volume 41 Issue 2
Jan.  2019
Turn off MathJax
Article Contents
Jiangyi LIU, Chunping WANG. Cardinalized Probability Hypothesis Density Filter Based on Pairwise Markov Chains[J]. Journal of Electronics & Information Technology, 2019, 41(2): 492-497. doi: 10.11999/JEIT180352
Citation: Jiangyi LIU, Chunping WANG. Cardinalized Probability Hypothesis Density Filter Based on Pairwise Markov Chains[J]. Journal of Electronics & Information Technology, 2019, 41(2): 492-497. doi: 10.11999/JEIT180352

Cardinalized Probability Hypothesis Density Filter Based on Pairwise Markov Chains

doi: 10.11999/JEIT180352
  • Received Date: 2018-04-17
  • Rev Recd Date: 2018-09-10
  • Available Online: 2018-09-25
  • Publish Date: 2019-02-01
  • In view of the problem that the Cardinalized Probability Hypothesis Density (CPHD) probability hypothesis density filtering algorithm based on the Pairwise Markov Chains (PMC) model (PMC-CPHD) is not suitable for implementation, the PMC-CPHD algorithm is modified into a polynomial form to facilitate implementation, and the Gauss Mixture (GM) implementation of the improved algorithm is given. The experimental results show that the given GM implementation realizes multitarget tracking effectively, and improves the stability of the target number estimation compared with the GM implementation of the probability hypothesis density filtering algorithm based on the PMC model (PMC-PHD).

  • loading
  • GAO Yiyue, JIANG Defu, and LIU Ming. Particle-gating SMC-PHD filter[J]. Signal Processing, 2017, 130: 64–73. doi: 10.1016/j.sigpro.2016.06.017
    杨丹, 姬红兵, 张永权. 未知杂波条件下样本校正的势估计概率假设密度滤波算法[J]. 电子与信息学报, 2018, 40(4): 912–919. doi: 10.11999/JEIT170666

    YANG Dan, JI Hongbing, and ZHANG Yongquan. A cardinalized probability hypothesis density filter with unknown clutter estimation using corrected sample set[J]. Journal of Electronics &Information Technology, 2018, 40(4): 912–919. doi: 10.11999/JEIT170666
    袁常顺, 王俊, 孙进平, 等. 一种幅度信息辅助多伯努利滤波算法[J]. 电子与信息学报, 2016, 38(2): 464–471. doi: 10.11999/JEIT150683

    YUAN Changshun, WANG Jun, SUN Jinping, et al. A multi-bernoulli filtering algorithm using amplitude information[J]. Journal of Electronics &Information Technology, 2016, 38(2): 464–471. doi: 10.11999/JEIT150683
    陈辉, 韩崇昭. Rao-Blackwellized粒子势均衡多目标多伯努利滤波[J]. 控制理论与应用, 2016, 33(2): 146–153. doi: 10.7641/CTA.2016.50588

    CHEN Hui and HAN Chongzhao. Rao-Blackwellized particle cardinality balanced multi-target multi-bernoulli filter[J]. Control Theory &Applications, 2016, 33(2): 146–153. doi: 10.7641/CTA.2016.50588
    QIU Hao, HUANG Gaoming, and GAO Jun. Variational bayesian labeled multi-bernoulli filter with unknown sensor noise statistics[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1378–1384. doi: 10.1016/j.cja.2016.05.002
    朱书军, 刘伟峰, 崔海龙. 基于广义标签多伯努利滤波的可分辨群目标跟踪算法[J]. 自动化学报, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334

    ZHU Shujun, LIU Weifeng, and CUI Hailong. Multiple resolvable groups tracking using the GLMB filter[J]. Acta Automatica Sinica, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334
    PETETIN Y and DESBOUVRIES F. Bayesian multi-object filtering for pairwise Markovchains[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4481–4490. doi: 10.1109/TSP.2013.2271751
    PIECZYNSKI W. Pairwise Markov chains[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 634–639. doi: 10.1109/TPAMI.2003.1195998
    MAHLER R. Tracking targets with pairwise-Markov dynamics[C]. International Conference on Information Fusion, Washington, DC, USA, 2015: 280-286.
    MAHLER R. On multitarget pairwise-Markov models[J]. Society of Photo-Optical Instrumentation Engineers(SPIE) , 2015, 9474 , 94740D: 1–12. doi: 10.1117/12.2177192
    MAHLER R. Multitarget bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    ERDINC O, WILLETT P, and BARSHALOM Y. A physical-space approach for the probability hypothesis density and cardinalized probability hypothesis density filters[C]. Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets, Orlando, USA, 2006, 6236, 623619: 1-12.
    NIE Yongfang and ZHANG Tao. An improved merging algorithm for the gaussian mixture probability hypothesis density filter[C]. Chinese Control and Decision Conference, Chongqing, China, 2017: 5687-5691.
    DONG Peng, JING Zhongliang, GONG Deren, et al. Maneuvering multi-target tracking based on variable structure multiple model GMCPHD filter[J]. Signal Processing, 2017, 141: 158–167. doi: 10.1016/j.sigpro.2017.06.004
    YANG Jinlong, LI Peng, YANG Le, et al. An improved ET-GM-PHD filter for multiple closely-spaced extended target tracking[J]. International Journal of Control, Automation and Systems, 2017, 15(1): 468–472. doi: 10.1007/s12555-015-0193-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (2202) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return