Citation: | Dezhou HU, Guanghui WEI, Xiaodong PAN, Xinfu LU. Investigation on the Radiated Interference E-field Threshold Testing for Common-mode Interference of Transmission Lines in Reverberation Chambers[J]. Journal of Electronics & Information Technology, 2019, 41(4): 837-844. doi: 10.11999/JEIT180328 |
To test the radiated interference E-field threshold of Equipment Under Test (EUT) with common-mode interference of transmission lines in reverberation chambers and unify the test results with the open areas, the range of the maximum directivity of the lines with random loads is calculated by the derivation of the equation of the common-mode currents and decomposition of the currents into the corresponding characteristic ones. The calculated results are validated with the experiments performed in a reverberation chamber and an open area, respectively, with a single conductor line and a coaxial cable as the EUT. The theoretical and experimental results show that the test results in the two different areas can be unified with the calculated results. The common mode interference of two conductor lines and coaxial cables can be equivalent to single conductor lines and the bend of the lines almost has no influence on the test results.
AMADOR E, KRAUTHAUSER H G, and BESNIER P. A binomial model for radiated immunity measurements[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(4): 683–691 doi: 10.1109/TEMC.2012.2231942
|
SELEMANI K, RICHALOT E, LEGRAND O, et al. Energy localization effects within a reverberation chamber and their reduction in chaotic geometries[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 325–333 doi: 10.1109/TEMC.2016.2617322
|
ARNAUT L R, MOGLIE F, BASTIANELLI L, et al. Helical stirring for enhanced low-frequency performance of reverberation chambers[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(4): 1016–1026 doi: 10.1109/TEMC.2016.2641386
|
MIGLIACCIO M, GIL J J, SORRENTINO A, et al. The polarization purity of the electromagnetic field in a reverberating chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 694–700 doi: 10.1109/TEMC.2016.2528503
|
MONSEF f, SERRA R, and COAAZ A. Goodness-of-fit tests in reverberation chambers: Is sample independence necessary?[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1748–1751 doi: 10.1109/TEMC.2015.2451211
|
GJB151B-2013: 军用设备和分系统电磁发射和敏感度要求与测量[S]. 国军标2013.
GJB151B-2013: Electromagnetic emission and susceptibility requirements and measurements[S]. China Military Standard 2013.
|
IEC 61000-4-21: ElectroMagnetic Compatibility (EMC)-Part4-21: Testing and measurement techniques-reverberation chamber test methods[S]. IEC Standard 2008.
|
贾锐, 王庆国, 王树峤, 等. 混响室条件下辐射敏感度表征方法研究[J]. 北京理工大学学报, 2016, 36(1): 100–104
JIA Rui, WANG Qingguo, WANG Shuqiao, et al. Research on the characterization of susceptibility threshold in reverberation chamber[J]. Transactions of Beijing Institute of Technology, 2016, 36(1): 100–104
|
熊久良, 刘心愿. 基于位置替代法的无线电引信混响室敏感度测试方法[J]. 高电压技术, 2015, 41(1): 320–326 doi: 10.13336/j.1003-6520.hve.2015.01.045
XIONG Jiuliang and LIU Xinyuan. Susceptibility test method of radio fuze in reverberation chamber based on position substitution method[J]. High Voltage Engineering, 2015, 41(1): 320–326 doi: 10.13336/j.1003-6520.hve.2015.01.045
|
AMADOR E, MIRY C, and BOUYGE N. Compatible susceptibility measurements in fully anechoic room and reverberation chamber[C]. Proceeding of the 2014 International Symposium on Electromagnetic Compatibility (EMC Europe 2014). Gothenburg, Sweden, 2014: 860–865.
|
HU Dezhou, WEI Guanghui, PAN Xiaodong, et al. Investigation of the radiation immunity testing method in reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(6): 1791–1797 doi: 10.1109/TEMC.2017.2698141
|
WILSON P F, HILL D A, and HOLLOWAY C L. On Determining the Maximum Emissions From Electrically Large Sources[J]. IEEE Transactions on Electromagnetic Compatibility, 2002, 41(1): 79–86.
|
HILL D A, CAMELL D G, CABCEY K H, et al. Radiated emissions and immunity of microstrip transmission lines: theory and reverberation chamber measurements[J]. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(2): 165–172 doi: 10.1109/15.494619
|
孙铁雷, 林程, 曹万科. 带有屏蔽线缆的电动车辆动力系统共模模型与预测[J]. 电工技术学报, 2012, 27(2): 128–132
SUN Tielei, LIN Cheng, and CAO Wanke. Common mode prediction oncable shielded drive system in electric vehicle[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 128–132
|
林福昌, 姚宗干, 代新, 等. 屏蔽电缆共模感应干扰的数值计算方法[J]. 高电压技术, 1997, 23(4): 9–11
LIN Fuchang, YAO Zonggan, DAI Xin, et al. Numerical calculation of common-model interference coupled in a shielded cable[J]. High Voltage Engineering, 1997, 23(4): 9–11
|
MAGDOWSKI M and VICK R. Closed-form formulas for the stochastic electromagnetic field coupling to a transmission line with arbitrary loads[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(5): 1147–1152 doi: 10.1109/TEMC.2012.2193130
|
MAGDOWSKI M, TKACHENKO S V, and VICK R. Coupling of stochastic electromagnetic fields to a transmission line in a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(2): 308–317 doi: 10.1109/TEMC.2010.2097267
|
CERRI G, LEO D, MOGLIE F, et al. Theoretical and experimental analysis of the field-to-line coupling in a reverberation chamber[J]. IEEE Proceedings: Science, Measurement and Technology, 2006, 153(6): 201–207 doi: 10.1049/ip-smt:20060014
|
VUKICEVIC A, RACHIDI F, RUBINSTEIN M, et al. On the evaluation of antenna-mode currents along transmission lines[J]. IEEE Transactions on Electromagnetic Compatibility, 2006, 48(4): 693–700 doi: 10.1109/TEMC.2006.884511
|
HE Z, ZHA L P, and CHEN R S. Efficient analysis of EM scattering by using higher-order hierarchical linear-liear basis functions[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 305–308 doi: 10.1109/LAWP.2015.2442616
|
GU Jihong, DING Dazhi, HE Zi, et al. A low frequency EFIE-MLFMA solver based on approximate diagonalization of the Green’s function[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7150–7156 doi: 10.1109/TAP.2017.2759786
|
CHEN Shitao, ZHANG Tiancheng, DING Dazhi, et al. EMI analysis of field-line-circuit coupling model based on time domain integral equation method[C]. IEEE Electrical Design Of Advanced Packing & System (EDAPS) Symposium, Hang Zhou, China, 2017.
|
LUGRIN G, TKACHENKO S V, RACHIDI F, et al. High-Frequency electromagnetic coupling to multiconductor transmission lines of finite length[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1714–1723 doi: 10.1109/TEMC.2015.2475156
|
吕琪. 不适定问题的迭代正则化方法研究[D]. [硕士论文], 武汉理工大学, 2012.
LUE Qi. The research of iterative regularization methods for ill-posed[D]. [Master dissertation], Wuhan University of Technology, 2012.
|
赵占山. 结构故障诊断的几种方法[D]. [硕士论文], 哈尔滨工业大学, 2006.
ZHAO Zhanshan. Several identification method on the structure fault diagnosis[D]. [Master dissertation], Harbin Institute of Technology, 2006.
|
MENG J, TEO Y X, THOMAS, D W P, et al. Fast prediction of transmission line radiated emissions using the hertzian dipole method and line-end discontinuity models[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(6): 1295–1303 doi: 10.1109/TEMC.2014.2318720
|
HILL D A. Plane wave integral representation for fields in reverberation chambers[J]. IEEE Transactions on Electromagnetic Compatibility, 1998, 40(3): 209–217 doi: 10.1109/15.709418
|