Citation: | Jianhang LIU, Yijing HE, Shibao LI, Lijin LU, Yunqiang DENG. Pre-decoding Based Maximum-likelihood Simplified Successive-cancellation Decoding of Polar Codes[J]. Journal of Electronics & Information Technology, 2019, 41(4): 959-966. doi: 10.11999/JEIT180324 |
To solve the long decoding latency caused by the serial nature of the decoding of polar codes, a pre-decoding based maximum-likelihood simplified successive-cancellation decoding algorithm is proposed. First, the signs of the likelihood values stored in the decoding tree nodes are extracted and grouped to obtain symbol vectors. Then comparing the symbol vectors and the values of some information bits, the distribution rules are found that positive and negative values stored in the vectors are one-to-one corresponding to the value of middle information bits of the node. Based on the above analysis, one or two bits in the middle of the constituent code are pre-decoded. Finally, the maximum likelihood decoding method is used to estimate the remaining information bits in the constituent code, and the final decoding results are obtained. Simulation results show that the proposed algorithm can effectively reduce the decoding delay compared with the existing algorithms without affecting the error performance.
ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073 doi: 10.1109/TIT.2009.2021379
|
İŞCAN O, BÖHNKE R, and XU Wen. Shaped polar codes for higher order modulation[J]. IEEE Communications Letters, 2018, 22(2): 252–255 doi: 10.1109/LCOMM.2017.2766621
|
郭锐, 王美洁, 王杰. 基于缩短极化码的MLC NAND Flash差错控制技术研究[J]. 电子与信息学报, 2017, 39(7): 1658–1665 doi: 10.11999/JEIT160864
GUO Rui, WANG Meijie, and WANG Jie. Research on the MLC NAND Flash error control technology based on polar codes[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1658–1665 doi: 10.11999/JEIT160864
|
GULCU T C and BARG A. Achieving secrecy capacity of the wiretap channel and broadcast channel with a confidential component[J]. IEEE Transactions on Information Theory, 2017, 63(2): 1311–1324 doi: 10.1109/TIT.2016.2631223
|
朱鸿斌, 戴胜辰, 康凯, 等. 改进型极化码混合自动请求重传法[J]. 电子与信息学报, 2017, 39(5): 1136–1141 doi: 10.11999/JEIT160736
ZHU Hongbin, DAI Shengchen, KANG Kai, et al. An improved HARQ scheme with polar codes[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1136–1141 doi: 10.11999/JEIT160736
|
LEROUX C, RAYMOND A J, SARKIS G, et al. A semi-parallel successive-cancellation decoder for polar codes[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 289–299 doi: 10.1109/TSP.2012.2223693
|
HUSMANN C, NIKOLAOU P C, and NIKITOPOULOS K. Reduced latency ML polar decoding via multiple sphere-decoding tree searches[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1835–1839 doi: 10.1109/TVT.2017.2761262
|
HASHEMI S A, CONDO C, and GROSS W J. A fast polar code list decoder architecture based on sphere decoding[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(12): 2368–2380 doi: 10.1109/TCSI.2016.2619324
|
ALAMDA-YAZDI A and KSCHISCHANG F R. A simplified successive-cancellation decoder for polar codes[J]. IEEE Communications Letters, 2011, 15(12): 1378–1380 doi: 10.1109/LCOMM.2011.101811.111480
|
SARKIS G, GIARD P, VARDY A, et al. Fast polar decoders: algorithm and implementation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(5): 946–957 doi: 10.1109/JSAC.2014.140514
|
HANIF M and ARDAKANI M. Fast successive-cancellation decoding of polar codes: identification and decoding of new nodes[J]. IEEE Communications Letters, 2017, 21(11): 2360–2363 doi: 10.1109/LCOMM.2017.2740305
|
HUANG Zhiliang, DIAO Chunjuan, DAI Jianxin, et al. An improvement of modified successive-cancellation decoder for polar codes[J]. IEEE Communications Letters, 2013, 17(12): 2360–2363 doi: 10.1109/LCOMM.2013.110413.132136
|
CHOI J and PARK I C. Improved successive-cancellation decoding of polar codes based on recursive syndrome decomposition[J]. IEEE Communications Letters, 2017, 21(11): 2344–2347 doi: 10.1109/LCOMM.2017.2730860
|
YOO H and PARK I C. Efficient pruning for successive-cancellation decoding of polar codes[J]. IEEE Communications Letters, 2016, 20(12): 2362–2365 doi: 10.1109/LCOMM.2016.2607167
|
SARKIS G and GROSS W J. Increasing the throughput of polar decoders[J]. IEEE Communications Letters, 2013, 17(4): 725–728 doi: 10.1109/LCOMM.2013.021213.121633
|
CHASE D. Class of algorithms for decoding block codes with channel measurement information[J]. IEEE Transactions on Information Theory, 1972, 18(1): 170–182 doi: 10.1109/TIT.1972.1054746
|