Advanced Search
Volume 41 Issue 2
Jan.  2019
Turn off MathJax
Article Contents
Jianxin GAI, Haochen DU, Qi LIU, Ziquan TONG. Sub-Nyquist Sampling Recovery Algorithm Based on Kernel Space of the Random-compression Sampling Value Matrix[J]. Journal of Electronics & Information Technology, 2019, 41(2): 484-491. doi: 10.11999/JEIT180323
Citation: Jianxin GAI, Haochen DU, Qi LIU, Ziquan TONG. Sub-Nyquist Sampling Recovery Algorithm Based on Kernel Space of the Random-compression Sampling Value Matrix[J]. Journal of Electronics & Information Technology, 2019, 41(2): 484-491. doi: 10.11999/JEIT180323

Sub-Nyquist Sampling Recovery Algorithm Based on Kernel Space of the Random-compression Sampling Value Matrix

doi: 10.11999/JEIT180323
Funds:  The National Natural Science Foundation of China (61501150), The Natural Science Foundation of Heilongjiang Province (QC2014C074)
  • Received Date: 2018-04-11
  • Rev Recd Date: 2018-10-29
  • Available Online: 2018-11-08
  • Publish Date: 2019-02-01
  • To solve the low performance problem of the existing Modulated Wideband Converter (MWC)-based sub-Nyquist sampling recovery algorithm, this paper proposes a support recovery algorithm based on the kernel space of sampling value and a random compression rank-reduction idea. Combining them, a high-performance sampling recovery algorithm is achieved. Firstly random compression transforms are used to convert the sampling equation into several new multiple-measurement-vector problems, without changing the sparsity of the unknown matrix. Then the orthogonal relationship between the kernel space of sampling value and the support vectors of sampling matrix is utilized to obtain joint sparse support set of the unknown. The final recovery is performed by the pseudo inversion. The proposed method is analyzed and verified by theory and experiment. Numerical experiments show that, compared with the traditional recovery algorithm, the proposal can improve the recovery success rate, and reduce the channel number required for high-probability recovery. Furthermore, in general, the recovery performance improves with the rise of compression times.

  • loading
  • PARK J, JANG J, IM S, et al. A sub-nyquist radar electronic surveillance system[J]. IEEE Access, 2018, 6: 10080–10091. doi: 10.1109/ACCESS.2018.2799304
    QIN Zhijin, GAO Yue, PLUMBLEY M D, et al. Wideband spectrum sensing on real-time signals at sub-Nyquist sampling rates in single and cooperative multiple nodes[J]. IEEE Transactions on Signal Processing, 2016, 64(12): 3106–3117. doi: 10.1109/TSP.2015.2512562
    郑仕链, 杨小牛. 用于调制宽带转换器压缩频谱感知的重构失败判定方法[J]. 电子与信息学报, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127

    ZHENG Shilian and YANG Xiaoniu. A reconstruction failure detection scheme for modulated wideband converter based compressed spectrum sensing[J]. Journal of Electronics &Information Technology, 2015, 37(1): 236–240. doi: 10.11999/JEIT140127
    DONOHO D L. Compressed sensing[J]. IEEE Transaction on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    BARANIUK R G. More is less: Signal processing and the data deluge[J]. Science, 2011, 331(6018): 717–719. doi: 10.1126/science.1197448
    LASKA J N, KIROLOS S, DUARTE M F, et al. Theory and implementation of an analog-to-information converter using random demodulation[C]. IEEE International Symposium on Circuits and Systems, New Orleans, USA, 2007: 1959–1962.
    FARDAD M, SAYEDI S M, and YAZDIAN E. Hardware implementation of iterative method with adaptive thresholding for random sampling recovery of sparse signals[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(5): 867–877. doi: 10.1109/TVLSI.2018.2791351
    REN Shiyu, ZENG Zhimin, GUO Caili, et al. A low complexity sensing algorithm for wideband sparse spectra[J]. IEEE Communications Letters, 2017, 21(1): 92–95. doi: 10.1109/LCOMM.2016.2616471
    MISHALI M and ELDAR Y C. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375–391. doi: 10.1109/JSTSP.2010.2042414
    ADAMS D, ELDAR Y C, and MURMANN B. A mixer front end for a four channel modulated wideband converter with 62-dB blocker rejection[J]. IEEE Journal of Solid-State Circuits, 2017, 52(5): 1286–1294. doi: 10.1109/JSSC.2017.2647941
    LEXA M A, DAVIES M E, and THOMPSON J S. Reconciling compressive sampling systems for spectrally sparse continuous-time signals[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 155–171. doi: 10.1109/TSP.2011.2169408
    ZHANG Ruoyu, ZHAO Honglin, JIA Shaobo, et al. Sparse multi-band signal recovery based on support refining for modulated wideband converter[C]. IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 2016: 304–309.
    COTTER F S, RAO D B, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477–2488. doi: 10.1109/TSP.2005.849172
    CHEN Jie and HUO Xiaoming. Theoretical results on sparse representations of multiple-measurement vectors[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4634–4643. doi: 10.1109/TSP.2006.881263
    BLANCHARD J D, CERMAK M, HANLE D, et al. Greedy algorithms for joint sparse recovery[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1694–1704. doi: 10.1109/TSP.2014.2301980
    KIM J M, LEE O K, and YE J C. Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278–301. doi: 10.1109/TIT.2011.2171529
    MISHALI M and ELDAR Y C. Reduce and boost: Recovering arbitrary sets of jointly sparse vectors[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4692–4702. doi: 10.1109/TSP.2008.927802
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (2130) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return