Advanced Search
Volume 41 Issue 2
Jan.  2019
Turn off MathJax
Article Contents
Qianbin CHEN, Youchao YANG, Yu ZHOU, Guofan ZHAO, Lun TANG. Deployment Algorithm of Service Function Chain of Access Network Based on Stochastic Learning[J]. Journal of Electronics & Information Technology, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310
Citation: Qianbin CHEN, Youchao YANG, Yu ZHOU, Guofan ZHAO, Lun TANG. Deployment Algorithm of Service Function Chain of Access Network Based on Stochastic Learning[J]. Journal of Electronics & Information Technology, 2019, 41(2): 417-423. doi: 10.11999/JEIT180310

Deployment Algorithm of Service Function Chain of Access Network Based on Stochastic Learning

doi: 10.11999/JEIT180310
Funds:  The National Natural Science Foundation of China (61571073)
  • Received Date: 2018-04-02
  • Rev Recd Date: 2018-09-03
  • Available Online: 2018-09-12
  • Publish Date: 2019-02-01
  • To solve problem of the high delay caused by the change of physical network topology under the 5G access network C-RAN architecture, this paper proposes a scheme about dynamic deployment of Service Function Chain (SFC) in access network based on Partial Observation Markov Decision Process (POMDP). In this scheme, the system observes changes of the underlying physical network topology through the heartbeat packet observation mechanism. Due to the observation errors, it is impossible to obtain all the real topological conditions. Therefore, by the partial awareness and stochastic learning of POMDP, the system dynamically adjust the deployment of the SFC in the slice of the access network when topology changes, so as to optimize the delay. Finally, point-based hybrid heuristic value iteration algorithm is used to find SFC deployment strategy. The simulation results show that this model can support to optimize the deployment of SFC in the access network side and improve the access network’s throughput and resource utilization.

  • loading
  • SHARMA S, MILLER R, and FRANCINI A. A cloud-native approach to 5G network slicing[J]. IEEE Communications Magazine, 2017, 55(8): 120–127. doi: 10.1109/MCOM.2017.1600942
    ZHANG Haijun, LIU Na, and CHU Xiaoli. Network slicing based 5G and future mobile networks: Mobility, resource management, and challenge[J]. IEEE Communications Magazine, 2017, 55(8): 138–145. doi: 10.1109/MCOM.217.1600940
    KATSALIS K, NIKAEIN N, and SCHILLER E. Network slices toward 5G communications: Slicing the LTE network[J]. IEEE Communications Magazine, 2017, 55(8): 146–154. doi: 10.1109/MCOM.2017.1600936
    FOUKAS X, PATOUNAS G, and ELMOKASHFI A. Network slicing in 5G: Survey and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 94–100. doi: 10.1109/MCOM.2017.1600951
    LI Xin and SAMAKA M. Network slicing for 5G: Challenges and opportunities[J]. IEEE Internet Computing, 2017, 21(5): 20–27. doi: 10.1109/MIC.2017.3481355
    MIJUMBI R, SERRAT J, and GORRICHO J L. Network function virtualization: state-of-the-art and research challenges[J]. IEEE Communications Surveys Tutorials, 2017, 18(1): 236–262. doi: 10.1109/COMST.2015.2477041
    GIL J H and BOTERO J F. Resource allocation in NFV: A comprehensive survey[J]. IEEE Transactions on Network and Service Management, 2016, 13(3): 518–532. doi: 10.1109/TNSM.2016.2598420
    HUANG Huawei and SONG Guo. Service chaining for hybrid network function[J]. IEEE Transactions on Cloud Computing, 2017. doi: 10.1109/TCC.2017.2721401
    QU Long, ASSI C, and SHABAN K. Delay-aware scheduling and resource optimization with network function virtualization[J]. IEEE Transactions on Communications, 2016, 64(9): 3746–3758. doi: 10.1109/TCOMM.2016.2580150
    MAHMOOD A M, AL-YASIRI A, and ALANI O Y K. A new processing approach for reducing computational complexity in cloud-RAN mobile networks[J]. IEEE Access, 2018, 6: 6927–6946. doi: 10.1109/ACCESS.2017.2782763
    CHIH I. RAN revolution with NGFI (xhaul) for 5G[J]. Journal of Lightwave Technology, 2018, 36(2): 541–550. doi: 10.1109/JLT.2017.2764
    ZHANG Nan, LIU Yafeng, and FARMANBAR H. Network slicing for service-oriented networks under resource constraints[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2512–2521. doi: 10.1109/JSAC.2017.2760147
    HAYASHIBARA N, DEFAGO X, and YARED R. The φ accrual failure detector[C]. IEEE International Symposium on Reliable Distributed Systems, Florianpolis, Brazil, 2014: 66–78.
    刘峰. 基于部分可观察马尔科夫决策过程的序列规划问题的研究[D]. [博士论文], 南京大学, 2015.

    LIU Feng. A study of sequence planning based on partially observable markov decision process[D]. [Ph.D. dissertation], Nanjing University, 2015.
    CILDEN E and POLAT F. Toward generalization of automated temporal abstraction to partially observable reinforcement learning[J]. IEEE Transactions on Cybernetics, 2017, 45(8): 1414–1425. doi: 10.1109/TCYB.2014.2352038
    ZHENG Qiang, ZHENG Kan, ZHANG Haijun, et al. Delay-optimal virtualized radio resource scheduling in software-defined vehicular networks via stochastic learning[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 7857–7867. doi: 10.1109/TVT.2016.2538461
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (1679) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return