Citation: | Benjian HAO, Linlin WANG, Zan LI, Yue ZHAO. Sensor Selection Method for TDOA Passive Localization[J]. Journal of Electronics & Information Technology, 2019, 41(2): 462-468. doi: 10.11999/JEIT180293 |
This paper focuses on the sensor selection optimization problem in Time Difference Of Arrival (TDOA) passive localization scenario. Firstly, the localization accuracy metric is given by the error covariance matrix of classical closed-form solution, which is introduced to convert the TDOA nonlinear equations into pseudo linear equations. Secondly, the problem of sensor selection can be mathematically transformed into the non-convex optimization problem, to minimize the trace of localization error covariance matrix under the condition that the number of active sensors is given. Then, the non-convex optimization problem is relaxed and transformed into a positive semi-definite programming problem so that the optimal subset of positioning nodes can be solved quickly and effectively. Simulation results validate that the performance of proposed sensor selection method is very close to the exhausted-search method, and overcomes the shortcomings of the high computation complexity and poor timeliness of the exhausted-search method.
胡勤振, 苏洪涛, 刘子威, 等. 配准误差下的多基地雷达目标检测算法[J]. 电子与信息学报, 2017, 39(1): 88–94. doi: 10.11999/JEIT160207
HU Qinzhen, SU Hongtao, LIU Ziwei, et al. Target detection algorithm for multistatic radar with registration errors[J]. Journal of Electronics &Information Technology, 2017, 39(1): 88–94. doi: 10.11999/JEIT160207
|
YASSIN A, NASSER Y, AWAD M, et al. Recent advances in indoor localization: A survey on theoretical approaches and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1327–1346. doi: 10.1109/COMST.2016.2632427
|
CHEN Hongyang, WANG Gang, WANG Zizhuo, et al. Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 108–116. doi: 10.1109/TWC.2011.110811.101739
|
CHEN Hongyang, SHI Qingjiang, TAN Rui, et al. Mobile element assisted cooperative localization for wireless sensor networks with obstacles[J]. IEEE Transactions on Wireless Communications, 2010, 9(3): 956–963. doi: 10.1109/TWC.2010.03.090706
|
SHI Qingjiang, HE Chen, CHEN Hongyang, et al. Distributed wireless sensor network localization via sequential greedy optimization algorithm[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3328–3340. doi: 10.1109/TSP.2010.2045416
|
HENTATI A, DRIOUCH E, FRIGON J, et al. Fair and low complexity node selection in energy harvesting wireless sensor networks[J]. IEEE Systems Journal, 2018, 99(1): 1–11. doi: 10.1109/JSYST.2017.2771294
|
JOSHI S and BOYD S. Sensor selection via convex optimization[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 451–462. doi: 10.1109/TSP.2008.2007095
|
LIU S, CHEPURI S P, FARDAD M, et al. Sensor selection for estimation with correlated measurement noise[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3509–3522. doi: 10.1109/TSP.2016.2550005
|
CHEPURI S P and LEUS G. Sparsity-promoting sensor selection for non-linear measurement models[J]. IEEE Transactions on Signal Processing, 2014, 63(3): 684–698. doi: 10.1109/TSP.2014.2379662
|
RAO S, CHEPURI S P, and LEUS G. Greedy sensor selection for non-linear models[C]. IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing(CAMSAP), Cancun, Mexico, 2015, (2): 241–244.
|
HO K C, LU Xiaoming, and KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684–696. doi: 10.1109/TSP.2006.885744
|
QU Xiaomei and XIE Lihua. An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements[J]. Signal Processing, 2016, 119(2): 142–152.
|
HO K C and XU Wenwei. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453–2463. doi: 10.1109/TSP.2004.831921
|
曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时差到达频差无源定位算法[J]. 电子与信息学报, 2014, 36(5): 1075–1081. doi: 10.3724/SP.J.1146.2013.01019
QU Fuyong and MENG Xiangwei. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1075–1081. doi: 10.3724/SP.J.1146.2013.01019
|
RUI Liyang, CHEN Shanjie, and HO K C. Anchor nodes refinement in joint localization and synchronization of a sensor node[C]. IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Brisbane, Australia, 2015: 2834–2838.
|
HO K C and SUN Ming. Passive source localization using time differences of arrival and gain ratios of arrival[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 464–477. doi: 10.1109/TSP.2007.906728
|
HO K C. Bias reduction for an explicit solution of source localization using TDOA[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2101–2114. doi: 10.1109/TSP.2012.2187283
|
YANG Xiaojun and NIU Ruixin. Adaptive sensor selection for nonlinear tracking via sparsity-promoting approaches[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018. doi: 10.1109/TAES.2018.2805258
|
GRANT M, BOYD S, and YE Y. CVX Version 2.1. Matlab Software for Disciplined Convex Programming[OL]. www.stanford.edu/boyd/cvx/, 2017.
|