Advanced Search
Volume 41 Issue 2
Jan.  2019
Turn off MathJax
Article Contents
Benjian HAO, Linlin WANG, Zan LI, Yue ZHAO. Sensor Selection Method for TDOA Passive Localization[J]. Journal of Electronics & Information Technology, 2019, 41(2): 462-468. doi: 10.11999/JEIT180293
Citation: Benjian HAO, Linlin WANG, Zan LI, Yue ZHAO. Sensor Selection Method for TDOA Passive Localization[J]. Journal of Electronics & Information Technology, 2019, 41(2): 462-468. doi: 10.11999/JEIT180293

Sensor Selection Method for TDOA Passive Localization

doi: 10.11999/JEIT180293
Funds:  The Key Project of National Natural Science Foundation of China (61631015), The Key Scientific and Technological Innovation Team Plan of Shaanxi Province (2016KCT-01), The National Natural Science Foundation of China (61471395), The Fundamental Research Funds for the Central Universities (7215433803)
  • Received Date: 2018-03-28
  • Rev Recd Date: 2018-11-16
  • Available Online: 2018-11-22
  • Publish Date: 2019-02-01
  • This paper focuses on the sensor selection optimization problem in Time Difference Of Arrival (TDOA) passive localization scenario. Firstly, the localization accuracy metric is given by the error covariance matrix of classical closed-form solution, which is introduced to convert the TDOA nonlinear equations into pseudo linear equations. Secondly, the problem of sensor selection can be mathematically transformed into the non-convex optimization problem, to minimize the trace of localization error covariance matrix under the condition that the number of active sensors is given. Then, the non-convex optimization problem is relaxed and transformed into a positive semi-definite programming problem so that the optimal subset of positioning nodes can be solved quickly and effectively. Simulation results validate that the performance of proposed sensor selection method is very close to the exhausted-search method, and overcomes the shortcomings of the high computation complexity and poor timeliness of the exhausted-search method.

  • loading
  • 胡勤振, 苏洪涛, 刘子威, 等. 配准误差下的多基地雷达目标检测算法[J]. 电子与信息学报, 2017, 39(1): 88–94. doi: 10.11999/JEIT160207

    HU Qinzhen, SU Hongtao, LIU Ziwei, et al. Target detection algorithm for multistatic radar with registration errors[J]. Journal of Electronics &Information Technology, 2017, 39(1): 88–94. doi: 10.11999/JEIT160207
    YASSIN A, NASSER Y, AWAD M, et al. Recent advances in indoor localization: A survey on theoretical approaches and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1327–1346. doi: 10.1109/COMST.2016.2632427
    CHEN Hongyang, WANG Gang, WANG Zizhuo, et al. Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 108–116. doi: 10.1109/TWC.2011.110811.101739
    CHEN Hongyang, SHI Qingjiang, TAN Rui, et al. Mobile element assisted cooperative localization for wireless sensor networks with obstacles[J]. IEEE Transactions on Wireless Communications, 2010, 9(3): 956–963. doi: 10.1109/TWC.2010.03.090706
    SHI Qingjiang, HE Chen, CHEN Hongyang, et al. Distributed wireless sensor network localization via sequential greedy optimization algorithm[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3328–3340. doi: 10.1109/TSP.2010.2045416
    HENTATI A, DRIOUCH E, FRIGON J, et al. Fair and low complexity node selection in energy harvesting wireless sensor networks[J]. IEEE Systems Journal, 2018, 99(1): 1–11. doi: 10.1109/JSYST.2017.2771294
    JOSHI S and BOYD S. Sensor selection via convex optimization[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 451–462. doi: 10.1109/TSP.2008.2007095
    LIU S, CHEPURI S P, FARDAD M, et al. Sensor selection for estimation with correlated measurement noise[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3509–3522. doi: 10.1109/TSP.2016.2550005
    CHEPURI S P and LEUS G. Sparsity-promoting sensor selection for non-linear measurement models[J]. IEEE Transactions on Signal Processing, 2014, 63(3): 684–698. doi: 10.1109/TSP.2014.2379662
    RAO S, CHEPURI S P, and LEUS G. Greedy sensor selection for non-linear models[C]. IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing(CAMSAP), Cancun, Mexico, 2015, (2): 241–244.
    HO K C, LU Xiaoming, and KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684–696. doi: 10.1109/TSP.2006.885744
    QU Xiaomei and XIE Lihua. An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements[J]. Signal Processing, 2016, 119(2): 142–152.
    HO K C and XU Wenwei. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453–2463. doi: 10.1109/TSP.2004.831921
    曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时差到达频差无源定位算法[J]. 电子与信息学报, 2014, 36(5): 1075–1081. doi: 10.3724/SP.J.1146.2013.01019

    QU Fuyong and MENG Xiangwei. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1075–1081. doi: 10.3724/SP.J.1146.2013.01019
    RUI Liyang, CHEN Shanjie, and HO K C. Anchor nodes refinement in joint localization and synchronization of a sensor node[C]. IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Brisbane, Australia, 2015: 2834–2838.
    HO K C and SUN Ming. Passive source localization using time differences of arrival and gain ratios of arrival[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 464–477. doi: 10.1109/TSP.2007.906728
    HO K C. Bias reduction for an explicit solution of source localization using TDOA[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2101–2114. doi: 10.1109/TSP.2012.2187283
    YANG Xiaojun and NIU Ruixin. Adaptive sensor selection for nonlinear tracking via sparsity-promoting approaches[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018. doi: 10.1109/TAES.2018.2805258
    GRANT M, BOYD S, and YE Y. CVX Version 2.1. Matlab Software for Disciplined Convex Programming[OL]. www.stanford.edu/boyd/cvx/, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1701) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return