Citation: | Hao LIU, Xiaofan SUN, Xinsheng ZHANG, Leming WU, Qigang KUANG. Consistency Enhancement Quality Assessment Criterion in Confidence Interval for Image Set[J]. Journal of Electronics & Information Technology, 2019, 41(1): 219-225. doi: 10.11999/JEIT180272 |
When evaluating the enhancement quality of a whole image set, the existing average score criterion varies inconsistently with different image sets and produces a large evaluation quality fluctuation. Therefore, this paper proposes a consistency enhancement quality assessment criterion in confidence interval for any image set. By setting application parameters and using confidence interval to screen data, the proposed criterion compares the quality score difference before and after enhancing each image, and evaluates the consistency of image quality enhancement, and then calculates the effective value of consistency enhancement quality scores. Among many image enhancement algorithms, the proposed criterion can select the high-reliability enhancement algorithm for a specific application. The experimental results show that the proposed criterion has good subjective and objective consistency and outperforms the existing average score criterion, which provides an evaluation criterion for those image enhancement algorithms applied to any image set.
王志明. 无参考图像质量评价综述[J]. 自动化学报, 2015, 41(6): 1062–1079. doi: 10.16383/j.aas.2015.c140404
WANG Zhiming. Review of no-reference image quality assessment[J]. Acta Automatica Sinica, 2015, 41(6): 1062–1079. doi: 10.16383/j.aas.2015.c140404
|
PENG Y T and COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579–1594. doi: 10.1109/TIP.2017.2663846
|
LI Chongyi, GUO Jichang, CONG Runmin, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664–5677. doi: 10.1109/TIP.2016.2612882
|
LI Chongyi, GUO Jichang, CHEN Shanji, et al. Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging[C]. IEEE International Conference on Image Processing, Phoenix, USA, 2016: 1993–1997.
|
YANG M and SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062–6071. doi: 10.1109/TIP.2015.2491020
|
吴雪垠, 吴谨, 张鹤. 逆滤波法在图像复原中的应用[J]. 信息技术, 2011(10): 183–185. doi: 10.3969/j.issn.1009-2552.2011.10.050
WU Xueyin, WU Jin, and ZHANG He. Research on image restoration techniques based on inverse filtering algorithm[J]. Information Technology, 2011(10): 183–185. doi: 10.3969/j.issn.1009-2552.2011.10.050
|
何石, 潘晓璐, 李一民. 一种均值滤波的优化算法[J]. 信息技术, 2012(3): 133–137. doi: 10.3969/j.issn.1009-2552.2012.03.038
HE Shi, PAN Xiaolu, and LI Yimin. Optimization algorithm for average filtering[J]. Information Technology, 2012(3): 133–137. doi: 10.3969/j.issn.1009-2552.2012.03.038
|
苏志锋. 基于FPGA的图像预处理研究与实现[D]. [博士论文], 华南理工大学, 2015.
SU Zhifeng. Studying and implementation of image signal preprocessing based on FPGA[D]. [Ph.D. dissertation], South China University of Technology, 2015.
|
李耀辉, 刘保军. 基于直方图均衡的图像增强[J]. 华北科技学院学报, 2003, 5(2): 65–67.
LI Yaohui and LIU Baojun. The image enhancement based on histogram equalization[J]. Journal of North China Institute of Science and Technology, 2003, 5(2): 65–67.
|
HITAM M S, AWALLUDIN E A, and YUSSOF W. Mixture contrast limited adaptive histogram equalization for underwater image enhancement[C]. International Conference on Computer Application Technology, Sousse, Tunisia, 2013: 1–5.
|
陈宇, 霍富荣, 苗华. 对比度拉伸在目标探测与识别中的应用研究[J]. 仪器仪表学报, 2008, 29(4): 795–798.
CHEN Yu, HUO Furong, and MIAO Hua. Application of contrast stretching in optical correlation detection and recognition[J]. Chinese Journal of Scientific Instrument, 2008, 29(4): 795–798.
|
杨勇, 郭玲, 王天江. 基于多尺度结构张量的多类无监督彩色纹理图像分割方法[J]. 计算机辅助设计与图形学学报, 2014, 26(5): 812–825.
YANG Yong, GUO Ling, and WANG Tianjiang. Multi-scale structure tensor based unsupervised color-texture image segmentation approach in multiclass[J]. Journal of Computer-Aided Design &Computer Graphics, 2014, 26(5): 812–825.
|
蒋刚毅, 黄大江, 王旭, 等. 图像质量评价方法研究进展[J]. 电子与信息学报, 2010, 32(1): 219–226. doi: 10.3724/SP.J.1146.2009.00091
JIANG Gangyi, HUANG Dajiang, WANG Xu, et al. Overview on image quality assessment methods[J]. Journal of Electronics &Information Technology, 2010, 32(1): 219–226. doi: 10.3724/SP.J.1146.2009.00091
|
EMBERTON S, CHITTKA L, and CAVALLARO A. Hierarchical rank-based veiling light estimation for underwater dehazing[C]. British Machine Vision Conference, Swansea, UK, 2015: 125.1–125.12.
|
JIAN Muwei, QI Qiang, DONG Junyu, et al. The OUC-Vision large-scale underwater image database[C]. IEEE International Conference on Multimedia & Expo, Hong Kong, China, 2017: 1297–1302.
|
JIAN Muwei, QI Qiang, DONG Junyu, et al. Saliency detection using quaternionic distance based weber local descriptor and level priors[J]. Multimedia Tools and Applications, 2018, 77(11): 14343–14360. doi: 10.1007/s11042-017-5032-z
|