Advanced Search
Volume 40 Issue 12
Nov.  2018
Turn off MathJax
Article Contents
Zemin WU, Jun WANG, Lei HU, Chang TIAN, Mingyong ZENG, Lin DU. Co-saliency Detection Based on Convolutional Neural Network and Global Optimization[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2896-2904. doi: 10.11999/JEIT180241
Citation: Zemin WU, Jun WANG, Lei HU, Chang TIAN, Mingyong ZENG, Lin DU. Co-saliency Detection Based on Convolutional Neural Network and Global Optimization[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2896-2904. doi: 10.11999/JEIT180241

Co-saliency Detection Based on Convolutional Neural Network and Global Optimization

doi: 10.11999/JEIT180241
  • Received Date: 2018-03-16
  • Rev Recd Date: 2018-08-22
  • Available Online: 2018-08-31
  • Publish Date: 2018-12-01
  • To solve the problems in current co-saliency detection algorithms, a novel co-saliency detection algorithm is proposed which applies fully convolution neural network and global optimization model. First, a fully convolution saliency detection network is built based on VGG16Net. The network can simulate the human visual attention mechanism and extract the saliency region in an image from the semantic level. Second, based on the traditional saliency optimization model, the global co-saliency optimization model is constructed, which realizes the transmission and sharing of the current superpixel saliency value in inter-images and intra-image through superpixel matching, making the final saliency map has better co-saliency value. Third, the inter-image saliency value propagation constraint parameter is innovatively introduced to overcome the disadvantages of superpixel mismatching. Experimental results on public test datasets show that the proposed algorithm is superior over current state-of-the-art methods in terms of detection accuracy and detection efficiency, and has strong robustness.
  • loading
  • CHANG Kaiyueh, LIU Tyngluh, and LAI Shanghong. From co-saliency to co-segmentation: An efficient and fully unsupervised energy minimization model[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado, USA, 2011: 2129–2136.
    JACOBS D E, DAN B G, and SHECHTMAN E. Co-saliency: Where people look when comparing images[C]. ACM Symposium on User Interface Software and Technology, New York, USA, 2010: 219–228.
    YE Linwei, LIU Zhi, ZHOU Xiaofeng, et al. Saliency detection via similar image retrieval[J]. IEEE Signal Processing Letters, 2016, 23(6): 838–842 doi: 10.1109/LSP.2016.2558489
    YE Linwei, LIU Zhi, LI Junhao, et al. Co-saliency detection via co-salient object discovery and recovery[J]. IEEE Signal Processing Letters, 2015, 22(11): 2073–2077 doi: 10.1109/LSP.2015.2458434
    LIU Zhi, ZOU Wenbin, and OLIVIER L M. Saliency tree: A novel saliency detection framework[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1937–1952 doi: 10.1109/TIP.2014.2307434
    REN Jingru, ZHOU Xiaofei, LIU Zhi, et al. Saliency integration driven by similar images[J]. Journal of Visual Communication and Image Representation, 2018, 50: 227–236 doi: 10.1016/j.jvcir.2017.12.002
    LI Yijun, FU Keren, LIU Zhi, et al. Efficient saliency-model-guided visual co-saliency detection[J]. IEEE Signal Processing Letters, 2015, 22(5): 588–592 doi: 10.1109/LSP.2014.2364896
    FU Huazhu, CAO Xiaochun, and TU Zhuowen. Cluster-based co-saliency detection[J]. IEEE Transactions on Image Processing, 2013, 22(10): 3766–3778 doi: 10.1109/TIP.2013.2260166
    LIU Zhi, ZOU Wenbin, LI Lina, et al. Co-saliency detection based on hierarchical segmentation[J]. IEEE Signal Processing Letters, 2014, 21(1): 88–92 doi: 10.1109/LSP.2013.2292873
    ZHANG Zhaofeng, WU Zemin, JIANG Qingzhu, et al. Co-saliency detection based on superpixel matching and cellular automata[J]. KSII Transactions on Internet and Information Systems, 2017, 11(5): 2576–2589 doi: 10.3837/tiis.2017.05.015
    YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA, 2013: 3166–3173.
    QIN Yao, LU Huchuan, XU Yiqun, et al. Saliency detection via cellular automata[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 110–119.
    ZHANG Dingwen, HAN Junwei, LI Chao, et al. Co-saliency detection via looking deep and wide[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2994–3002.
    ZHANG Dingwen, MENG Deyu, HAN Junwei, et al. Co-saliency detection via a self-paced multiple-instance learning framework[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(5): 865–878 doi: 10.1109/TPAMI.2016.2567393
    WEI Lina, ZHAO Shanshan, BOURAHLA O E F, et al. Group-wise deep co-saliency detection[C]. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 3041–3047.
    SIMONYAN K, and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[OL]. Computer Science, 2014. arXiv: 1409.1556.
    LI Xi, ZHAO Liming, WEI Lina, et al. Deepsaliency: Multi-task deep neural network model for salient object detection[J]. IEEE Transactions on Image Processing, 2016, 25(8): 3919–3930 doi: 10.1109/TIP.2016.2579306
    JIA Yangqing, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional architecture for fast feature embedding [C]. Proceedings of the ACM International Conference on Multimedia, 2014: 675–678.
    CHENG Mingming, ZHANG Guoxin, NILOY J, et al. Global contrast based salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Spring, USA, 2011: 409–416.
    ACHANTA R, SHAJI A, SMITH K, et al. Slic superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282 doi: 10.1109/TPAMI.2012.120
    LU Song, MAHADEVAN V, and VASCONCELOS N. Learning optimal seeds for diffusion-based salient object detection[C]. IEEE Computer Vision and Pattern Recognition (CVPR), Columbus, USA, 2014: 2790–2797.
    LI Hongliang and NGAN K N. A co-saliency model of image pairs[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3365–3375 doi: 10.1109/TIP.2011.2156803
    BATRA D, KOWDLE A, PARIKH D, et al. Interactively co-segmentating topically related images with intelligent scribble guidance[J]. International Journal of Computer Vision, 2011, 93(3): 273–292 doi: 10.1007/s11263-010-0415-x
    CAO Xiaochun, TAO Zhiqiang, ZHANG Bao, et al. Self-adaptively weighted co-saliency detection via rank constraint[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4175–4186 doi: 10.1109/TIP.2014.2332399
    ZHANG Dingwen, HAN Junwei, HAN Jungong, et al. Co-saliency detection based on intra-saliency prior transfer and deep inter-saliency mining[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6): 1163–1176 doi: 10.1109/TNNLS.2015.2495161
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (2498) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return