Citation: | Wenkang LIU, Guobin JING, Guangcai SUN, Quan CHEN, Mengdao XING. Medium-earth-orbit SAR Data Focusing Method Based on Two-step Azimuth Resampling[J]. Journal of Electronics & Information Technology, 2019, 41(1): 136-142. doi: 10.11999/JEIT180238 |
The obvious orbit curvature of Medium Earth Orbit (MEO) results in severe two-dimensional space variance in the received signals. Thus, the focusing of MEO SAR data is still a problem to be solved. Fourth-order polynomial is used to model the range history. Also, an azimuth two-step resampling method is proposed to address the azimuth variance. The azimuth resampling in the time domain can adjust the azimuth chirp rate to be the same, then CS/RMA algorithm can be used to handle the space variance of the RCM. The second-step azimuth resampling can correct the left space variance of the Doppler parameters, including range-azimuth coupled space variance of the azimuth chirp rate, and the higher-order focusing parameters. The proposed method can well address the azimuth space variance of the whole scene, make the conventional frequency-domain focusing algorithms applicable to large scene focusing. Finally, the comparison results obtained by the proposed method and the reference method, validate the effectiveness of the proposed method.
ROLF W and STEFAN B. The TerraSAR-X mission and system design[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 606–615. doi: 10.1109/TGRS.2009.2031062
|
ZHANG Tianyi, DING Zegang, TIAN Weiming, et al. A 2-D nonlinear chirp scaling algorithm for high squint GEO SAR imaging based on optimal azimuth polynomial compensation[J]. IEEE Journal of Selected Topics in Applied Earth Observations And Remote Sensing, 2017, 10(12): 5724–5735. doi: 10.1109/JSTARS.2017.2765353
|
STEPHEN H. System design for geosynchronous synthetic aperture radar missions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7750–7763. doi: 10.1109/TGRS.2014.2318171
|
JALAL M, PACO L D, and GERHARD K. Potentials and limitations of MEO SAR[C]. European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1–5.
|
TIAN Ye, HU Cheng, DONG Xichao, et al. Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 721–725. doi: 10.1109/LGRS.2014.2360235
|
LI Liang, HONG Jun, and MING Feng. Study about ionospheric effects on medium-earth-orbit SAR imaging[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 27–31.
|
温雪娇, 仇晓兰, 尤红建, 等. 高分辨率星载SAR起伏运动目标精聚焦与参数估计方法[J]. 雷达学报, 2017, 6(2): 213–220. doi: 10.12000/JR17005
WEN Xuejiao, QIU Xiaolan, YOU Hongjian, et al. Focusing and parameter estimation of fluctuating targets in high resolution space-borne SAR[J]. Journal of Radars, 2017, 6(2): 213–220. doi: 10.12000/JR17005
|
HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 500–508. doi: 10.1109/TGRS.2010.2053211
|
BAO Ming, XING Mengdao, LI Yachao, et al. Two-dimensional spectrum for MEO SAR processing using a modified advanced hyperbolic range equation[J]. Electronics Letters, 2011, 47(18): 1043–1045. doi: 10.1049/el.2011.1322
|
TANG Shiyang, LIN Chunhui, ZHOU Yu, et al. Processing of long integration time spaceborne SAR data with curved orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 52(2): 888–904. doi: 10.1109/TGRS.2017.2756109
|
CHEN Jie, KUANG Hui, YANG Wei, et al. A novel imaging algorithm for focusing high-resolution spaceborne SAR data in squinted sliding-spotlight mode[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1577–1581. doi: 10.1109/LGRS.2016.2598066
|
RICHARD B. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706–713. doi: 10.1109/36.158864
|
HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Medium-Earth-Orbit SAR focusing using range Doppler algorithm with integrated two-step azimuth perturbation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 626–630. doi: 10.1109/LGRS.2014.2353674
|
WANG Yan, LI Jingwen, XU Feng, et al. A new nonlinear chirp scaling algorithm for high-squint high-resolution SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2225–2229. doi: 10.1109/LGRS.2017.2758386
|
LI Zhenyu, XING Mengdao, LIANG Yi, et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4023–4038. doi: 10.1109/TGRS.2016.2535391
|
LI Zhenyu, LIANG Yi, XING Mengdao, et al. An improved range model and omega-k-based imaging algorithm for high-squint SAR with curved trajectory and constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 656–660. doi: 10.1109/LGRS.2016.2533631
|
LI Dexin, WU Manqing, SUN Zaoyu, et al. Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3999–4009. doi: 10.1109/JSTARS.2015.2418814
|
DAVIDE D and ANDREA M G. High-resolution spaceborne SAR focusing by SVD-Stolt[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 639–643. doi: 10.1109/LGRS.2007.903081
|
CHEN Jianlai, SUN Guangcai, YANG Jun, et al. A TSVD-NCS algorithm in range-Doppler domain for geosynchronous synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1631–1635. doi: 10.1109/LGRS.2016.2599224
|
HAUKE F, ELKE B, and JOSEF M. Total zero Doppler steering—A new method for minimizing the Doppler centroid[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 141–145. doi: 10.1109/LGRS.2005.844591
|
DANIEL P S. Analytic yaw-pitch steering for side-looking SAR with numerical roll algorithm for incidence angle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3587–3594. doi: 10.1109/TGRS.2012.2183375
|