Citation: | Zhiqiang WEI, Haixia BI. PolSAR Image Classification Based on Discriminative Clustering[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2795-2803. doi: 10.11999/JEIT180229 |
KONG J A, SWARTZ A A, YUEH H A, et al. Identification of terrain cover using the optimum polarimetric classifier[J]. Journal of Electromagnetic Waves and Applications, 1988, 2(2): 171–194.
|
POTTIER E and SAILLARD J. On radar polarization target decomposition theorems with application to target classification by using network method[C]. Proceedings of the International Conference on Antennas and Propagation, York, UK, 1991, 1: 265–268.
|
FUKUDA S and HIROSAWA H. Support vector machine classification of land cover: Application to polarimetric SAR data[C]. Proceedings of the IEEE International Conference on Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 2001, 1: 187–189.
|
JIAO Licheng and LIU Fang. Wishart deep stacking network for fast PolSAR image classification[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3273–3286 doi: 10.1109/TIP.2016.2567069
|
ZHOU Yu, WANG Haipeng, XU Feng, et al. Polarimetric SAR image classification using deep convolutional neural networks[J]. IEEE Geoscience Remote Sensing Letters, 2017, 13(12): 1935–1939 doi: 10.1109/LGRS.2016.2618840
|
GAO Wei, YANG Jian, and MA Wenting. Land cover classification for polarimetric SAR images based on mixture models[J]. Remote Sensing, 2014, 6(5): 3770–3790 doi: 10.3390/rs6053770
|
CLOUDE S R and POTTIER E. An entropy based classification scheme for land application of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78 doi: 10.1109/36.551935
|
FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973 doi: 10.1109/36.673687
|
YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699–1706 doi: 10.1109/TGRS.2005.852084
|
XU Feng and JIN Yaqiu. Deorientation theory of polarimetric scattering targets and application to terrain surface classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10): 2351–2364 doi: 10.1109/TGRS.2005.855064
|
DOULEGERIS A P, ANFINSEN S N, and ELROFT T. Classification with a non-Gaussian model for PolSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 2999–3009 doi: 10.1109/TGRS.2008.923025
|
徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148 doi: 10.12000/JR16130
XU Feng, WANG Haipeng and JIN Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136–148 doi: 10.12000/JR16130
|
钟能, 杨文, 杨祥立, 等. 基于混合Wishart模型的极化SAR图像非监督分类[J]. 雷达学报, 2017, 6(2): 136–148 doi: 10.12000/JR16133
ZHONG Neng, YANG Wen, YANG Xiangli, et al. Unsupervised Classification for Polarimetric Synthetic Aperture RadarImages Based on Wishart Mixture Models[J]. Journal of Radars, 2017, 6(2): 136–148 doi: 10.12000/JR16133
|
BACH F and HARCHAOUI Z. DIFFRAC: A discriminative and flexible framework for clustering[C]. Proceedings of Conference and Workshop on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2007: 49–56.
|
SUN Jian and PONECE J. Learning discriminative part detectors for image classification and cosegmentation[C]. Proceedings of IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 2013: 3400–3407.
|
ZHU Ciyou, BYRD R H, LU Peihuang, et al. L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization[J]. ACM Transaction Mathematical Software, 1997, 23(4): 550–560 doi: 10.1145/279232.279236
|
WU Yonghui, JI Kefeng, YU Wenxian, et al. Region-based classification of polarimetric SAR images using Wishart MRF[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 668–672 doi: 10.1109/LGRS.2008.2002263
|
LEE J S, GRUNES M R, Ainsworth T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249–2258 doi: 10.1109/36.789621
|
WANG Shuang, LIU Kun, PEI Jingjing, et al. Unsupervised classification of fully polarimetric SAR images based on scattering power entropy and copolarized ratio[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 622–626 doi: 10.1109/LGRS.2012.2216249
|
LIU Gaofeng, LI Ming, WU Yan, et al. PolSAR image classification based on Wishart TMF with specific auxiliary field[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1230–1234 doi: 10.1109/LGRS.2013.2290066
|
LEE J S, GRUMES M R, POTTIER E, et al. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722–731 doi: 10.1109/TGRS.2003.819883
|