Advanced Search
Volume 41 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
Sinian JIN, Dianwu YUE, Qiuna YAN. Massive MIMO Full-duplex Relaying with Hardware Impairments and Zero-forcing Processing[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1352-1358. doi: 10.11999/JEIT180228
Citation: Sinian JIN, Dianwu YUE, Qiuna YAN. Massive MIMO Full-duplex Relaying with Hardware Impairments and Zero-forcing Processing[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1352-1358. doi: 10.11999/JEIT180228

Massive MIMO Full-duplex Relaying with Hardware Impairments and Zero-forcing Processing

doi: 10.11999/JEIT180228
Funds:  The National Natural Science Foundation of China(61801074), The Fundamental Research Funds for the Central Universities (3132016347), The Liaoning Provincial Natural Science Foundation (201602086)
  • Received Date: 2018-03-09
  • Rev Recd Date: 2019-04-07
  • Available Online: 2019-04-10
  • Publish Date: 2019-06-01
  • A massive MIMO full-duplex relaying system is considerd in this paper, in which multiple single-antenna sources simultaneously communicate with multiple single-antenna destinations using a single relay that is equipped with ${N_{{\mathop{\rm rx}\nolimits} }}$ receive antennas and ${N_{{\mathop{\rm tx}\nolimits} }}$ transmit antennas. Under imperfect Channel State Information (CSI) and hardware impairment, the relay processes the received and transmitted signals by means of Zero-Forcing (ZF) and uses Decode-and-Forward (DF) scheme. The closed-form expressions of achievable rate are deduced. Based on these expressions, the various power scaling laws can be obtained. It is shown that when the two numbers of the relay receive and transmit antennas go to infinity but with a fixed ratio, the system can maintain a desirable quality of service in the case of scaling the transmit powers of the sources, relay and pilots.
  • loading
  • MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092
    NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449. doi: 10.1109/TCOMM.2013.020413.110848
    HUANG Yongming, HE Shiwen, WANG Jiaheng, et al. Spectral and energy efficiency tradeoff for massive MIMO[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6991–7002. doi: 10.1109/TVT.2018.2824311
    TRAN T X and TEH K C. Spectral and energy efficiency analysis for SLNR precoding in massive MIMO systems with imperfect CSI[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 4017–4027. doi: 10.1109/TWC.2018.2819184
    PIRZADEH H and SWINDLEHURST A L. Spectral efficiency of mixed-ADC massive MIMO[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3599–3613. doi: 10.1109/TSP.2018.2833807
    ZHANG Xing, ZHONG Lin, and SABHARWAL A. Directional training for FDD massive MIMO[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5183–5197. doi: 10.1109/TWC.2018.2838600
    NGO H Q, SURAWEERA H A, MATTHAIOU M, et al. Multipair full-duplex relaying with massive arrays and linear processing[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1721–1737. doi: 10.1109/JSAC.2014.2330091
    SHARMA E, BUDHIRAJA R, VASUDEVAN K, et al. Full-duplex massive MIMO multi-pair two-way AF relaying: Energy efficiency optimization[J]. IEEE Transactions on Communications, 2018, 66(8): 3322–3340. doi: 10.1109/TCOMM.2018.2822273
    XIE Wei, XIA Xiaochen, XU Youyun, et al. Massive MIMO full-duplex relaying with hardware impairments[J]. Journal of Communications and Networks, 2017, 19(4): 351–362. doi: 10.1109/JCN.2017.000059
    JIN Sinian, YUE Dianwu, and NGUYEN H H. Power scaling laws of massive MIMO full-duplex relaying with hardware impairments[J]. IEEE Access, 2018, 6: 40860–40882. doi: 10.1109/ACCESS.2018.2857496
    XU Kui, GAO Yuanyuan, XIE Wei, et al. Achievable rate of full-duplex massive MIMO relaying with hardware impairments[C]. Proceedings of 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 2015: 84–89.
    ZHANG Jiayi, XUE Xipeng, BJÖRNSON E, et al. Spectral efficiency of multipair massive MIMO two-way relaying with hardware impairments[J]. IEEE Wireless Communications Letters, 2018, 7(1): 14–17. doi: 10.1109/LWC.2017.2750162
    ZHANG Qi, QUEK T Q S, and JIN Shi. Scaling analysis for massive MIMO systems with hardware impairments in rician fading[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4536–4549. doi: 10.1109/TWC.2018.2827068
    ZHU Jun, NG D W K, WANG Ning, et al. Analysis and design of secure massive MIMO systems in the presence of hardware impairments[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 2001–2016. doi: 10.1109/TWC.2017.2659724
    BIGUESH M and GERSHMAN A B. Training-based MIMO channel estimation: A study of estimator tradeoffs and optimal training signals[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 884–893. doi: 10.1109/TSP.2005.863008
    ZHANG Xinlin, MATTHAIOU M, COLDREY M, et al. Energy efficiency optimization in hardware-constrained large-scale MIMO systems[C]. Proceedings of the 11th International Symposium on Wireless Communications Systems, Barcelona, Spain, 2014: 992–996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (2594) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return