Citation: | Xiaorong JING, Hongbao TAO. Optimization Design Method for Sparse Code Multiple Access Codebooks[J]. Journal of Electronics & Information Technology, 2019, 41(1): 24-31. doi: 10.11999/JEIT180208 |
As a competitive Non-Orthogonal Multiple Access (NOMA) technique, Sparse Code Multiple Access (SCMA) improves efficiently the system spectral efficiency by combining the high dimensional modulation and sparse spread spectrum. To address the existing issues of SCMA codebook design, an optimization design method for SCMA codebooks is proposed for both Rayleigh fading and Gaussian channels. In the method, by rotating the base constellation and the mother constellation, the minimum Euclidean distance between the projection points of the mother constellation on each dimension, and between the constellation points on the constellations corresponding to each user in the total constellation on a single resource block is maximized in order to improve the performance of the SCMA codebooks over Gaussian channels; On the basis of it, by rotating the constellation of multiple users superimposed on each resource block, the corresponding minimum product distance and the Signal Space Diversity (SSD) order of the users’ constellations are optimized; At last, an additional diversity gain is achieved by using Q-coordinate interleaving technology to improve further the performance over the Rayleigh fading channels. Simulation results show that the performance of the proposed SCMA codebooks outperforms that of the HUAWEI’ SCMA codebooks and Low Density Signature Multiple Access (LDS-MA) in both the Gaussian channels and the Rayleigh fading channels.
DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G K, et al. A Survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519
|
HOSEIN N and BALIGH H. Sparse code multiple access[C]. IEEE International Symposium on Personal Indoor and Mobile Radio Communications, London, UK, 2013: 332–336. doi: 10.1109/PIMRC.2013.6666156.
|
ZHANG Shunqing, XU Qiuqiang, LU Lei, et al. Sparse code multiple access: An energy efficient uplink approach for 5G wireless systems[C]. IEEE Global Communications Conference, Austin, USA, 2014: 4782–4787. doi: 10.1109/GLOCOM.2014.7037563.
|
ZHANG Chenchen, LUO Yuan, and CHEN Yan. A low complexity SCMA detector based on discretization[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2333–2345. doi: 10.1109/TWC.2018.2792425
|
MA Xinying, YANG Lin, CHEN Zhi, et al. Low complexity detection based on dynamic factor graph for SCMA systems[J]. IEEE Communications Letters, 2017, 21(12): 2666–2669. doi: 10.1109/LCOMM.2017.2752745
|
杜洋, 董彬虹, 王显俊, 等. 基于串行策略的SCMA多用户检测算法[J]. 电子与信息学报, 2016, 38(8): 1888–1893. doi: 10.11999/JEIT151259
DU Yang, DONG Binhong, WANG Xianjun, et al. Multiuser detection scheme for SCMA systems based on serial strategy[J]. Journal of Electronics &Information Technology, 2016, 38(8): 1888–1893. doi: 10.11999/JEIT151259
|
FORNEY G K and WEI L F. Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations[J]. IEEE Journal on Selected Areas in Communications, 1989, 7(6): 877–892. doi: 10.1109/49.29611
|
TAHERZADEH M, HOSEIN N, BAYESTEH A. et al. SCMA codebook design[C]. IEEE 80th Vehicular Technology Conference, Vancouver, USA, 2014: 1–5. doi: 10.1109/VTCFall.2014.6966170.
|
BAO Jinchen, MA Zheng, MAHAMADU M A. et al. Spherical codes for SCMA codebook[C]. IEEE 83rd Vehicular Technology Conference, Nanjing, China, 2016: 1–5. doi: 10.1109/VTCSpring.2016.7504489.
|
HAN Yu, WANG Zhenyong, LI Dezhi, et al. A novel multi-dimensional constellation design method based on lattices for sparse code multiple access[C]. IEEE 13th International Conference on Signal Processing, Chengdu, China, 2016: 1264–1269. doi: 10.1109/ISCP.2016.7878029.
|
YU Lisu, LEI Xianfu, FAN Pingzhi, et al. An optimized design of SCMA codebook based on star-QAM signaling constellations[C]. International Conference on Wireless Communications & Signal Processing, Nanjing, China, 2015: 1–5. doi: 10.1109/WCSP. 2015.7341311.
|
ALAM M and ZHANG Qi. Performance study of SCMA codebook design[C]. IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–5. doi: 10.1109/WCNC.2017.7925767.
|
ALAM M and ZHANG Qi. Designing optimum mother constellation and codebooks for SCMA[C]. IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7996539.
|
BOUTROS J and VITERBO E. Good lattice constellations for both Rayleigh fading and Gaussian channels[J]. IEEE Transactions on Information Theory, 1996, 42(2): 502–518. doi: 10.1109/18.485720
|
BOUTROS J and VITERBO E. Signal space diversity: A power- and bandwidth-efficient diversity technique for the Rayleigh fading channel[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1453–1467. doi: 10.1109/18.681321
|
Altera Innovation Asia website, Presentation 1st 5G algorithm innovation competition-ENV1.0-SCMA[OL]. http://www.innov-ateasia.com/5g/en/gp2.html. 2017.
|
BEEK J V D and POPOVIC B M. Multiple access with low-density signatures[C]. IEEE Global Telecommunications Conference, Honolulu, USA. 2009: 1–6. doi: 10.1109/GLOCOM.2009.5425243.
|