Advanced Search
Volume 40 Issue 12
Nov.  2018
Turn off MathJax
Article Contents
Tianfang YU, Lanlan RUI, Xuesong QIU. Research on SDN-based Load Balancing Technology of Server Cluster[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3028-3035. doi: 10.11999/JEIT180207
Citation: Tianfang YU, Lanlan RUI, Xuesong QIU. Research on SDN-based Load Balancing Technology of Server Cluster[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3028-3035. doi: 10.11999/JEIT180207

Research on SDN-based Load Balancing Technology of Server Cluster

doi: 10.11999/JEIT180207
Funds:  The National Natural Science Foundation of China (61702048, 61302078)
  • Received Date: 2018-02-28
  • Rev Recd Date: 2018-08-13
  • Available Online: 2018-08-22
  • Publish Date: 2018-12-01
  • Under the present network architecture, it is disadvantageous for scalability and service performance of server cluster to adopt hardware systems to realize load balancing of server cluster, because there are some restriction factors in such a method, including the difficulty of acquiring load nodes status and the complexity of redirecting traffic, etc. To solve the problem, a Load Balancing mechanism based on Software-Defined Networking (SDNLB) is proposed. With superiorities of SDN such as centralized control and flexible traffic scheduling, SDNLB monitors run states of servers and overall network load information by means of SNMP protocol and OpenFlow protocol in real time, and chooses the highest weight server as target server aiming for processing coming flows through the way of weight value calculation. On this basis, SDNLB takes full advantage of the optimal forwarding path algorithm to carry on traffic scheduling, and achieves the goal that raises utilization rate and processing performance of server cluster. An experiment platform is built to carry out simulation tests for overall performance of SDNLB, and the experiment results show that under the same network load conditions, SDNLB lowers effectively loads of server cluster, noticeably raises network throughput and bandwidth utilization, and reduces finish time and average latency of flows, compared with other load balancing algorithms.
  • loading
  • GHOMI E, RAHMANI A, and QADER N. Load-balancing algorithms in cloud computing: A survey[J]. Journal of Network and Computer Applications, 2017, 88(12): 50–71 doi: 10.1016/j.jnca.2017.04.007
    SHARMA G and BUSCH C. A load balanced directory for distributed shared memory objects[J]. Journal of Parallel and Distributed Computing, 2015, 78(4): 6–24 doi: 10.1016/j.jpdc.2015.02.002
    ILCHOL P, QIAO Baiyou, SHEN Muchuan, et al. An efficient load balancing approach for N-hierarchical web server cluster[J]. Wuhan University Journal of Natural Sciences, 2015, 20(6): 537–542 doi: 10.1007/s11859-015-1130-9
    YANG Juipin. Elastic load balancing using self-adaptive replication management[J]. IEEE Access, 2017, 5(99): 7495–7504 doi: 10.1109/ACCESS.2016.2631490
    SHEIKHI S and BABAMIR S. A predictive framework for load balancing clustered web servers[J]. The Journal of Supercomputing, 2016, 72(2): 588–611 doi: 10.1007/s11227-015-1584-8
    MAO Qilin and SHEN Weikang. A load balancing method based on SDN[C]. The 7th International Conference on Measuring Technology and Mechatronics Automation, Nanchang, China, 2015: 18–21.
    TRESTIAN R, KATRINIS K, and MUNTEAN G. OFLoad: An OpenFlow-based dynamic load balancing strategy for datacenter networks[J]. IEEE Transactions on Network and Service Management, 2017, 14(4): 792–803 doi: 10.1109/TNSM.2017.2758402
    李龙, 付斌章, 陈明宇, 等. Nimble: 一种适用于OpenFlow网络的快速流调度策略[J]. 计算机学报, 2015, 38(5): 1056–1068 doi: 10.3724/SP.J.1016.2015.01056

    LI Long, FU Binzhang, CHEN Mingyu, et al. Nimble: A fast flow scheduling strategy for OpenFlow networks[J]. Chinese Journal of Computers, 2015, 38(5): 1056–1068 doi: 10.3724/SP.J.1016.2015.01056
    AL-FARES M, RADHAKRISHNAN S, RAGHAVAN B, et al. Hedera: Dynamic flow scheduling for data center networks[C]. NSDI’10 Proceedings of the 7th USENIX conference on networked systems design and implementation, San Jose, USA, 2010: 281–296.
    蔡岳平, 王昌平. 软件定义数据中心网络混合路由机制[J]. 通信学报, 2016, 37(4): 44–52 doi: 10.11959/j.issn.1000-436x.2016071

    CAI Yueping and WANG Changping. Software defined data center network with hybrid routing[J]. Journal on Communications, 2016, 37(4): 44–52 doi: 10.11959/j.issn.1000-436x.2016071
    覃匡宇, 黄传河, 刘柯威, 等. 基于多路广播树的SDN多路径路由算法[J]. 计算机科学, 2018, 45(1): 211–215 doi: 10.11896/j.issn.1002-137X.2018.01.037

    TAN Kuangyu, HUANG Chuanhe, LIU Kewei, et al. Multipath routing algorithm in software defined networking based on multipath broadcast tree[J]. Computer Science, 2018, 45(1): 211–215 doi: 10.11896/j.issn.1002-137X.2018.01.037
    LIAO Lingxia and LEUNG VC. LLDP based link latency monitoring in software defined networks[C]. The 12th International Conference on Network and Service Management, Montreal, Canada, 2016: 330–335.
    RUBIN I and ZHANG Runhe. Max-min utility fair flow management for networks with route diversity[J]. International Journal of Network Management, 2010, 20(6): 361–381 doi: 10.1002/nem.740
    YEN J Y. Finding the K shortest loopless paths in a network[J]. Management Science, 1971, 17(11): 712–716 doi: 10.1287/mnsc.17.11.712
    JIANG J R, HUANG H W, LIAO J H, et al. Extending Dijkstra’s shortest path algorithm for software defined networking[C]. The 16th Asia-Pacific Network Operations and Management Symposium, Hsinchu, China, 2014: 1–4.
    ZHANG Zhe, BOCKELMAN B, CARDER D, et al. Lark: An effective approach for software-defined networking in high throughput computing clusters[J]. Future Generation Computer Systems, 2017, 72(7): 105–117 doi: 10.1016/j.future.2016.03.010
    CHEN Yingying, JAIN S, ADHIKARI V, et al. A first look at inter-data center traffic characteristics via Yahoo! datasets[C]. IEEE INFOCOM, Shanghai, China, 2011: 1620–1628.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (1807) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return