Advanced Search
Volume 40 Issue 12
Nov.  2018
Turn off MathJax
Article Contents
Ruya FAN, Chenhui JIN, Ting CUI. Upper Bound Estimation of Average Differential Probability and Average Linear Chains Probability of Lai-Massey Structure[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2986-2991. doi: 10.11999/JEIT180196
Citation: Ruya FAN, Chenhui JIN, Ting CUI. Upper Bound Estimation of Average Differential Probability and Average Linear Chains Probability of Lai-Massey Structure[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2986-2991. doi: 10.11999/JEIT180196

Upper Bound Estimation of Average Differential Probability and Average Linear Chains Probability of Lai-Massey Structure

doi: 10.11999/JEIT180196
Funds:  The National Natural Science Foundation of China (61402523, 61572516, 61502532)
  • Received Date: 2018-02-28
  • Rev Recd Date: 2018-07-20
  • Available Online: 2018-08-06
  • Publish Date: 2018-12-01
  • Lai-Massey structure is a block cipher structure developed from IDEA algorithm. FOX is the representative of this cipher structure. In this paper, the keys are assumed to be generated independently and uniform randomly, and then the provable security against differential and linear cryptanalysis of Lai-Massey structure is studied from two aspects: the upper bound of the average differential probability and the upper bound of the average linear chains probability with the given starting and ending points. This paper proves that when $r{\rm{ = }}2$ , the average differential probability $ \le p{}_{\max }$ . With the F function of the Lai-Massey structure is orthomorphism, this paper proves that when $r \ge 3$ , the average differential probability $ \le p_{\max }^2$ . A similar conclusion is obtained for the linear chains with a given starting and ending point.
  • loading
  • LAI Xuejia and MASSEY J. A proposal for a new block encryption standard. In: Advances in Cryptology[J]. LNCS, 1990, 473: 389–404 doi: 10.1007/3-540-46877-3_35
    VAUDENAY S. On the Lai-Massey scheme[J]. LNCS, 1999, 1716: 8–19 doi: 10.1007/978-3-540-48000-6_2
    JUNOD P and VAUDENAY S. FOX: A new family of block ciphers[C]. LNCS, 2004, 259: 131–146. doi: 10.1007/978-3-540-30564-4_8.
    WU Wenling, ZHANG Wentao, and FENG Dengguo. Improved integral cryptanalysis of reduced FOX block cipher[C]. LNCS, 2005, 3935: 229–241.
    WU Zhongming, LAI Xuejia, ZHU Bo, et al. Impossible differential cryptanalysis of FOX[J]. LNCS, 2010, 6163: 236–249 doi: 10.1007/978-3-642-14597-1_15
    魏悦川, 孙兵, 李超. FOX 密码的不可能差分分析[J]. 通信学报, 2010, 31(9): 24–29

    WEI Yuechuan, SUN Bing, and LI Chao. Impossible differential attacks on FOX[J].Journal on Communications, 2010, 31(9): 24–29
    吴文玲, 卫宏儒. 低轮 FOX 分组密码的碰撞-积分攻击[J]. 电子学报, 2005, 33(7): 1307–1310

    WU Wenling and WEI Hongru. Collision-integral attack of reduced-round FOX[J]. Acta Electronica Sinica, 2005, 33(7): 1307–1310
    郭瑞, 金晨辉. 低轮FOX64算法的零相关-积分分析[J]. 电子与信息学报, 2015, 37(2): 418–422 doi: 10.11999/JEIT140373

    GUO Rui and JIN Chenhui. Zero correlation-Integral attack of reduced-round FOX[J]. Journal of Electronics&Information Technology, 2015, 37(2): 418–422 doi: 10.11999/JEIT140373
    LI Ruilin, YOU Jianxiong, SUN Bing, et al. Fault analysis study of the block cipher FOX64[J]. Multimedia Tools and Applications, 2013, 63(3): 691–708 doi: 10.1007/s11042-011-0895-x
    LUO Yiyuan, LAI Xuejia, and GONG Zheng. Pseudorandomness analysis of the (extended) Lai-Massey scheme[J]. Information Processing Letters, 2010, 111(2): 90–96 doi: 10.1016/j.ipl.2010.10.012
    YUN A, PARK J H, and LEE J. On Lai-Massey and quasi-Feistel ciphers[J]. Design Codes and Cryptography, 2011, 58: 45–72 doi: 10.1007/s10623-010-9386-8
    郭瑞, 金晨辉. Lai-Massey结构伪随机特性研究[J]. 电子与信息学报, 2014, 36(4): 828–833 doi: 10.3724/SP.J.1146.2013.00870

    GUO Rui and JIN Chenhui. On the pseudorandomness of the Lai-Massey scheme[J]. Journal of Electronics&Information Technology, 2014, 36(4): 828–833 doi: 10.3724/SP.J.1146.2013.00870
    AOKI K and OHTA K. Strict evaluation of the maximum average of differential probability and the maximum average of linear probability[J]. IEICE Transactions Fundamentals, 1997, E80-A(1): 2–8.
    NYBERG L and KNUDSEN L R. Provable security against a differential attack[J].Journal of Cryptology, 1995, 8: 27–37 doi: 10.1007/BF00204800
    付立仕, 金晨辉. 基于仿射非正型s变换的Lai-Massey模型的密码学缺陷[J]. 电子与信息学报, 2013, 35(10): 2536–2540 doi: 10.3724/SP.J.1146.2012.01574

    FU Lishi and JIN Chenhui. The cryptographic weakness of Lai-Massey scheme with an affine but not orthomorphic bijection s[J]. Journal of Electronics&Information Technology, 2013, 35(10): 2536–2540 doi: 10.3724/SP.J.1146.2012.01574
    付立仕, 金晨辉. Lai-Massey 模型的差分和线性可证明安全性[J]. 软件学报, 2013, 24(Suppl.2): 207–215

    FU Lishi and JIN Chenhui. Differential and linear provable security of Lai-Massey scheme[J]. Journal of Software, 2013, 24(Suppl.2): 207–215
    金晨辉, 郑浩然, 张少武, 等. 密码学[M]. 北京: 高等教育出版社, 2009: 175–198.

    JIN Chenhui, ZHENG Haoran, ZHANG Shaowu, et al. Cryptology[M]. Beijing: Higher Education Press, 2009: 175–198.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2246) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return