Citation: | Hongyan LUO, Ziyan ZHU, Rui LIN, Zhen LIN, Yanjian LIAO. Improved No-reference Noisy Image Quality Assessment Based on Masking Effect and Gradient Information[J]. Journal of Electronics & Information Technology, 2019, 41(1): 210-218. doi: 10.11999/JEIT180195 |
Heavy computational burden, or complex training procedure and poor universality caused by the manual setting of the fixed thresholds are the main issues associated with most of the noise image quality evaluation algorithms using domain transformation or machine learning. As an attempt for solution, an improved spatial noisy image quality evaluation algorithm based on the masking effect is presented. Firstly, according to the layer-layer progressive rule based on Hosaka principle, an image is divided into sub-blocks with different sizes that match the frequency distribution of its content, and a masking weight is assigned to each sub-block correspondingly. Then the noise in the image is detected through the pixel gradient information extraction, via a two-step strategy. Following that, the preliminary evaluation value is obtained by using the masking weights to weight the noise pollution index of all the sub-blocks. Finally, the correction and normalization are carried out to generate the whole image quality evaluation parameter——i.e. Modified No-Reference Peak Signal to Noise Ratio (MNRPSNR). Such an algorithm is tested on LIVE and TID2008 image quality assessment database, covering a variety of noise types. The results indicate that compared with the current mainstream evaluation algorithms, it has strong competitiveness, and also has the significant effects in improving the traditional algorithm. Moreover, the high degree of consistency to the human subjective feelings and the applicability to multiple noise types are well demonstrated.
HADIZADEH H and VAN BAJIC I. Full-reference objective quality assessment of tone-mapped images[J]. IEEE Transactions on Multimedia, 2018, 20(2): 392–404. doi: 10.1109/TMM.2017.2740023
|
MA Jian, AN Ping, SHEN Liquan, et al. Reduced-reference stereoscopic image quality assessment using natural scene statistics and structural degradation[J]. IEEE Access, 2018, 6: 2768–2780. doi: 10.1109/ACCESS.2017.2785282
|
FANG Yuming, YAN Jiebin, LI Leida, et al. No reference quality assessment for screen content images with both local and global feature representation[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1600–1610. doi: 10.1109/TIP.2017.2781307
|
WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
|
YE Peng and DAVID D. No-reference image quality assessment based on visual codebook[C]. IEEE International Conference on Image Processing, Brussels, Belgium 2011: 11–14.
|
WAN Wenfei, WU Jinjian, XIE Xuemei, et al. A novel just noticeable difference model via orientation regularity in DCT domain[J]. IEEE Access, 2017, 5: 22953–22964. doi: 10.1109/ACCESS.2017.2699858
|
MA Lin, WANG Xu, LIU Qiong, et al. Reorganized DCT-based image representation for reduced reference stereoscopic image quality assessment[J]. Neurocomputing, 2016, 215: 21–31. doi: 10.1016/j.neucom.2015.06.116
|
SAAD M A, BOVIK A C, and CHARRIER C. A DCT statistics-based blind image quality index[J]. IEEE Signal Processing Letters, 2010, 17(6): 583–586. doi: 10.1109/LSP.2010.2045550
|
SAAD M A, BOVIK A C, and CHARRIER C. Blind image quality assessment: A natural scene statistics approach in the DCT domain[J]. IEEE Transactions on Image Processing, 2012, 22(8): 3339–3352. doi: 10.1109/TIP.2012.2191563
|
CHANDLER D M and HEMAMI S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284–2298. doi: 10.1109/TIP.2007.901820
|
QIN Ming, LÜ Xiaoxin, CHEN Xiaohui, et al. Hybrid NSS features for no-reference image quality assessment[J]. IET Image Processing, 2017, 11(6): 443–449. doi: 10.1049/iet-ipr.2016.0411
|
LI Leida, YAN Ya, LU Zhaolin, et al. No-reference quality assessment of deblurred images based on natural scene statistics[J]. IEEE Access, 2017, 5: 2163–2171. doi: 10.1109/ACCESS.2017.2661858
|
YANG Guangyi, LIAO Yue, ZHANG Qingyi, et al. No-reference quality assessment of noise-distorted images based on frequency mapping[J]. IEEE Access, 2017, 5: 23146–23156. doi: 10.1109/ACCESS.2017.2764126
|
ABDEL-HAMID L, EI-RAFEI A, and MICHELSON G. No-reference quality index for color retinal images[J]. Computers in Biology and Medicine, 2017, 90: 68–75. doi: 10.1016/j.compbiomed.2017.09.012
|
MA Kede, LIU Wentao, ZHANG Kai, et al. End-to-end blind image quality assessment using deep neural networks[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1202–1213. doi: 10.1109/TIP.2017.2774045
|
LIU Tsungjung and LIU Kuanhsien. No-reference image quality assessment by wide-perceptual-domain scorer ensemble method[J]. IEEE Transaction on Image Processing, 2018, 27(3): 1138–1151. doi: 10.1109/TIP.2017.2771422
|
MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4659–4708. doi: 10.1109/TIP.2012.2214050
|
MOORTHY A K and BOVIK A C. Blind image quality assessment: From natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350–3364. doi: 10.1109/TIP.2011.2147325
|
LIU Anmin and LIN Weisi. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500–1512. doi: 10.1109/TIP.2011.2175935
|
王正友, 肖文. 基于掩盖效应的无参考数字图像质量评价[J]. 计算机应用, 2006, 26(12): 2838–2840.
WANG Zhengyou and XIAO Wen. No-reference digital image quality evaluation based on perceptual masking[J]. Computer Applications, 2006, 26(12): 2838–2840.
|
徐海勇, 郁梅, 骆挺, 等. 基于非负矩阵分解的彩色图像质量评价方法[J]. 电子与信息学报, 2016, 38(3): 578–585. doi: 10.11999/JEIT150610
XU Haiyong, YU Mei, LUO Ting, et al. A color image quality assessment method based on non-negative matrix factorization[J]. Journal of Electronics &Information Technology, 2016, 38(3): 578–585. doi: 10.11999/JEIT150610
|
蒋平, 张建州. 基于局部最大梯度的无参考图像质量评价[J]. 电子与信息学报, 2015, 37(11): 2587–2593. doi: 10.11999/JEIT141447
JIANG Ping and ZHANG Jianzhou. No-reference image quality assessment based on local maximum gradient[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2587–2593. doi: 10.11999/JEIT141447
|
SHEIKH H R, WANG Zhou, and CORMACK L. LIVE image quality assessment database, release 2 [EB/OL]. http://live.ece.utexass.edu/research/quality, 2005.
|
PONOMARENKO N. Tampere image database 2008 TID2008, version 1.0[EB/OL]. http://www.ponomarenko.info/index.html, 2009.
|
Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase II VQEG [OL]. http://www.vqeg.org/, 2003.
|
MOORTHY A K and BOVIK A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 2010, 17(5): 513–516. doi: 10.1109/LSP.2010.2043888
|
TANG Huixuan, JOSHI N, and KAPOOR A. Learning a blind measure of perceptual image quality[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011: 305–312.
|
MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a " completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726
|
SHEIKH H R, BOVIK A C, and DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117–2128. doi: 10.1109/TIP.2005.859389
|
DAMERA-VENKATA N, KITE T D, GEISLER W S, et al. Image quality assessment based on a degradation model[J]. IEEE Transactions on Image Processing, 2000, 9(4): 636–650. doi: 10.1109/83.841940
|
WANG Zhou and BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81–84. doi: 10.1109/97.995823
|