Advanced Search
Volume 40 Issue 12
Nov.  2018
Turn off MathJax
Article Contents
Zhongtao LUO, Peng LU, Yangyong ZHANG, Gang ZHANG. A Novel Method for Nonlinear Processing in Impulsive Noise Based on Gaussianization and Generalized Matching[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2928-2935. doi: 10.11999/JEIT180191
Citation: Zhongtao LUO, Peng LU, Yangyong ZHANG, Gang ZHANG. A Novel Method for Nonlinear Processing in Impulsive Noise Based on Gaussianization and Generalized Matching[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2928-2935. doi: 10.11999/JEIT180191

A Novel Method for Nonlinear Processing in Impulsive Noise Based on Gaussianization and Generalized Matching

doi: 10.11999/JEIT180191
Funds:  The National Natural Science Foundation of China (61701067, 61771085, 61671095), The Project supported by Scientific Research Foundation of the Chongqing Education Committee (KJ1600427, KJ1600429)
  • Received Date: 2018-02-11
  • Rev Recd Date: 2018-07-26
  • Available Online: 2018-08-03
  • Publish Date: 2018-12-01
  • A method based on Gaussianization and generalized matching, called Gaussianization-Generalized Matching (GGM) method is proposed, for nonlinear processing in impulsive noise. The GGM method can be designed based on noise samples, aided by nonparametric probability density estimation. Thus the GGM design is suitable for nonlinear processing in unknown noise models. The GGM method in the ${\rm S\alpha S}$ model is analyzed, and also the comparison with another approach is presented based on unmatched noise model assumption in the Class A noise. The GGM method is applied to the constant false alarm rate technique via the efficacy function. Simulation and analysis results show that the GGM design is sub-optimal, works robustly when the noise model is unknown, and raises a low requirement on the sample number. Thus, the GGM method provides a promising choice when the noise model is unclear or time-varying.
  • loading
  • KAY S M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory[M]. Englewood Cliffs, US, Prentice-Hall, Inc., 1993: 94–115.
    LACHOS V H, ANGOLINI T, and ABANTO-VALLE C A. On estimation and local influence analysis for measurement errors models under heavy-tailed distributions[J]. Statistical Papers, 2011, 52(3): 567–590 doi: 10.1007/s00362-009-0270-4
    DAVIS R R and CLAVIER O. Impulsive noise: A brief review[J]. Elsevier Hearing Research, 2017, 349: 34–36 doi: 10.1016/j.heares.2016.10.020
    LI Xutao, JIN Lianwen, and WANG Shouyong. A simplified non-Gaussian mixture model for signal LO detection in -stable interference[C]. IEEE Congress on Image and Signal Processing, Beijing, China, 2008: 403–407.
    SHAO M and NIKIAS C L. Signal processing with fractional lower order moments: stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7): 986–1010 doi: 10.1109/5.231338
    ZHANG Guoyong, WANG Jun, YANG Guosheng, et al. Nonlinear processing for correlation detection in symmetric alpha-stable noise[J]. IEEE Signal Processing Letters, 2018, 25(1): 120–124 doi: 10.1109/LSP.2017.2776317
    MIDDLETON D. Procedures for determining the parameters of the first-order canonical models of Class A and Class B electromagnetic interference[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 21(3): 190–208 doi: 10.1109/TEMC.1979.303731
    TSIHRINTZIS G A and NIKIAS C L. Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process[J]. IEEE Transactions on Communications, 1995, 43(2/3/4): 904–914 doi: 10.1109/26.380123
    VADALI S R K, RAY P, MULA S, et al. Linear detection of a weak signal in additive Cauchy noise[J]. IEEE Transactions on Communications, 2017, 65(3): 1061–1076 doi: 10.1109/TCOMM.2016.2647599
    OH H and NAM H. Design and performance analysis of nonlinearity preprocessors in an impulsive noise environment[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 364–376 doi: 10.1109/TVT.2016.2547889
    LI Xutao, SUN Jun, WANG Shouyong, et al. Near-optimal detection with constant false alarm ratio in varying impulsive interference[J]. IET Signal Processing, 2013, 7(9): 824–832 doi: 10.1049/iet-spr.2013.0024
    LI Xutao, CHEN Peng, FAN Lisheng, et al. Normalization-based receiver using BCGM approximation for -stable noise channels[J]. Electronics Letters, 2013, 49(15): 965–967 doi: 10.1049/el.2013.1289
    SWAMI A and SADLER B M. On some detection and estimation problems in heavy-tailed noise[J]. Elsevier Signal Processing, 2002, 82(12): 1829–1846 doi: 10.1016/S0165-1684(02)00314-6
    张杨勇, 刘勇. 低频段大气噪声及处理技术[J]. 舰船科学技术, 2008, 30(S1): 85–88 doi: 10.3404/j.issn.1672-7649.2008.S021

    ZHANG Yangyong and LIU Yong. Atmospheric-noise at low frequency and its processing technique[J]. Ship Science&Technology, 2008, 30(S1): 85–88 doi: 10.3404/j.issn.1672-7649.2008.S021
    WANG Pingbo, LIU Feng, CAI Zhiming, et al. G-Filter's Gaussianization function for interference background[C]. International Conference on Signal Acquisition and Processing, Nanjing, China, 2010: 76–79.
    SAMIUDDIN M and EL-SAYYAD G M. On nonparametric kernel density estimates[J]. Biometrika, 1990, 77(4): 865–874 doi: 10.1093/77.4.865
    SILVERMAN B W. Density Estimation for Statistics and Data Analysis[M]. London, UK, Chapman & Hall, 1986: 45–48.
    HASHEMIFARD Z and AMINDAVAR H. PDF approximations to estimation and detection in time-correlated alpha-stable channels[J]. Elsevier Signal Processing, 2017, 133: 97–106 doi: 10.1016/j.sigpro.2016.10.021
    BIBALAN M H, AMINDAVAR H, and AMIRMAZLAGHANI M. Characteristic function based parameter estimation of skewed alpha-stable distribution: An analytical approach[J]. Elsevier Signal Processing, 2017, 130: 323–336 doi: 10.1016/j.sigpro.2016.07.020
    KOLODZIEJSKI K R and BETZ J W. Detection of weak random signals in IID non-Gaussian noise[J]. IEEE Transactions on Communications, 2000, 48(2): 222–230 doi: 10.1109/26.823555
    ARIF M, NASEEM I, MOINUDDIN M, et al. Design of optimum error nonlinearity for channel estimation in the presence of Class-A impulsive noise[C]. IEEE International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia, 2017: 1–6.
    WEINBERG G V. On the construction of CFAR decision rules via transformations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 1140–1146 doi: 10.1109/TGRS.2016.2620138
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1663) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return