Citation: | Xiaoni DU, Liping ZHAO, Lianhua WANG. Linear Complexity of Quaternary Sequences over Z4 Derived from Generalized Cyclotomic Classes Modulo 2p2[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2992-2997. doi: 10.11999/JEIT180189 |
GOLOMB S W and GONG Guang. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar[M]. Cambridge: UK, Cambridge University Press, 2005: 174–175.
|
杜小妮, 王国辉, 魏万银. 周期为2p2的四阶二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2015, 37(10): 2490–2494 doi: 10.11999/JETT150180
DU Xiaoni, WANG Guohui, and WEI Wanyin. Linear complexity of binary generalized cyclotomic sequences of order four with period 2p2[J]. Journal of Electronics&Information Technology, 2015, 37(10): 2490–2494 doi: 10.11999/JETT150180
|
李瑞芳, 柯品惠. 一类新的周期为2pq的二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2014, 36(3): 650–654 doi: 10.3724/SP.J.1146.2013.00751
LI Ruifang and KE Pinhui. The linear complexity of a new class of generalized cyclotomic sequences with period 2pq[J]. Journal of Electronics&Information Technology, 2014, 36(3): 650–654 doi: 10.3724/SP.J.1146.2013.00751
|
ZHANG Jingwei and ZHAO Changan. The linear complexity of a class of binary sequences with period 2p[J]. Applicable Algebra in Engineering,Communication and Computing, 2015, 26(5): 475–491 doi: 10.1007/s00200-015-0261-8
|
MA Xiao, YAN Tongjiang, ZHANG Daode, et al. Linear complexity of some binary interleaved sequences of period 4N[J]. International Journal of Network Security, 2016, 18(2): 244–249 doi: 10.6633/IJNS.201603.18(2).06
|
EDEMSKIY V and PALVINSKIY A. The linear complexity of binary sequences of length 2p with optimal three-level autocorrelation[J]. Information Processing Letters, 2016, 116(2): 153–156 doi: 10.1016/j.ipl.2015.09.007
|
DU Xiaoni and CHEN Zhixiong. Linear complexity of quaternary sequences generated using generalized cyclotomic classes modulo 2p[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 2011, 94(5): 1214–1217 doi: 10.1587/transfun.E94.A.1214
|
CHEN Zhixiong. Linear complexity and trace representation of quaternary sequences over Z4 based on generalized cyclotomic classes modulo[J]. Cryptography and Communications, 2017, 9(4): 445–458 doi: 10.1007/s12095-016-0185-6
|
EDEMSKIY V and IVANOV A. Linear complexity of quaternary sequences of length pq with low autocorrelation[J]. Journal of Computational and Applied Mathematics, 2014, 259B: 555–560 doi: 10.1016/j.cam.2013.08.003
|
EDEMSKIY V and IVANOV A. The linear complexity of balanced quaternary sequences with optimal autocorrelation value[J]. Cryptography and Communications, 2015, 7(4): 485–496 doi: 10.1007/s12095-015-0130-0
|
CHEN Zhixiong and EDEMSKIY V. Linear complexity of quaternary sequences over Z4 derived from generalized cyclotomic classes modulo[OL]. arXiv preprint arXiv: 1603.05086, 2016.
|
IRELAND K and ROSEN M. A Classical Introduction to Modern Number Theory[M]. Germany: Springer Science & Business Media, 2013: 83–120.
|
UDAYA P and SIDDIQI M U. Generalized GMW quadriphase sequences satisfying the Welch bound with equality[J]. Applicable Algebra in Engineering,Communication and Computing, 2000, 10(3): 203–225 doi: 10.1007/s002000050125
|
WAN Zhexian. Finite Fields and Galois Rings[M]. Singapore, World Scientific Publishing Company, 2011: 23–25.
|
CUSICK T W, DING Gunsheng, and RENVALL A R. Stream Ciphers and Number Theory[M]. Dutch, Elsevier, 2004: 112–113.
|