Advanced Search
Volume 40 Issue 12
Nov.  2018
Turn off MathJax
Article Contents
Xiaoni DU, Liping ZHAO, Lianhua WANG. Linear Complexity of Quaternary Sequences over Z4 Derived from Generalized Cyclotomic Classes Modulo 2p2[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2992-2997. doi: 10.11999/JEIT180189
Citation: Xiaoni DU, Liping ZHAO, Lianhua WANG. Linear Complexity of Quaternary Sequences over Z4 Derived from Generalized Cyclotomic Classes Modulo 2p2[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2992-2997. doi: 10.11999/JEIT180189

Linear Complexity of Quaternary Sequences over Z4 Derived from Generalized Cyclotomic Classes Modulo 2p2

doi: 10.11999/JEIT180189
Funds:  The National Natural Science Foundation of China (61462077, 61772022), Anhui Province Natural Science Foundation (1608085MF143), Shanghai Municipal Natural Science Foundation (16ZR1411200)
  • Received Date: 2018-02-11
  • Rev Recd Date: 2018-08-13
  • Available Online: 2018-08-27
  • Publish Date: 2018-12-01
  • Based on the theory of Galois rings of characteristic 4, a new class of quaternary sequences with period 2p2 is established over Z4 using generated cyclotomy, where p is an odd prime. The linear complexity of the new sequences is determined. Results show that the sequences have larger linear complexity and resist the attack by Berlekamp-Massey (B-M) algorithm. It is a good sequence from the viewpoint of cryptography.
  • loading
  • GOLOMB S W and GONG Guang. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar[M]. Cambridge: UK, Cambridge University Press, 2005: 174–175.
    杜小妮, 王国辉, 魏万银. 周期为2p2的四阶二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2015, 37(10): 2490–2494 doi: 10.11999/JETT150180

    DU Xiaoni, WANG Guohui, and WEI Wanyin. Linear complexity of binary generalized cyclotomic sequences of order four with period 2p2[J]. Journal of Electronics&Information Technology, 2015, 37(10): 2490–2494 doi: 10.11999/JETT150180
    李瑞芳, 柯品惠. 一类新的周期为2pq的二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2014, 36(3): 650–654 doi: 10.3724/SP.J.1146.2013.00751

    LI Ruifang and KE Pinhui. The linear complexity of a new class of generalized cyclotomic sequences with period 2pq[J]. Journal of Electronics&Information Technology, 2014, 36(3): 650–654 doi: 10.3724/SP.J.1146.2013.00751
    ZHANG Jingwei and ZHAO Changan. The linear complexity of a class of binary sequences with period 2p[J]. Applicable Algebra in Engineering,Communication and Computing, 2015, 26(5): 475–491 doi: 10.1007/s00200-015-0261-8
    MA Xiao, YAN Tongjiang, ZHANG Daode, et al. Linear complexity of some binary interleaved sequences of period 4N[J]. International Journal of Network Security, 2016, 18(2): 244–249 doi: 10.6633/IJNS.201603.18(2).06
    EDEMSKIY V and PALVINSKIY A. The linear complexity of binary sequences of length 2p with optimal three-level autocorrelation[J]. Information Processing Letters, 2016, 116(2): 153–156 doi: 10.1016/j.ipl.2015.09.007
    DU Xiaoni and CHEN Zhixiong. Linear complexity of quaternary sequences generated using generalized cyclotomic classes modulo 2p[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 2011, 94(5): 1214–1217 doi: 10.1587/transfun.E94.A.1214
    CHEN Zhixiong. Linear complexity and trace representation of quaternary sequences over Z4 based on generalized cyclotomic classes modulo[J]. Cryptography and Communications, 2017, 9(4): 445–458 doi: 10.1007/s12095-016-0185-6
    EDEMSKIY V and IVANOV A. Linear complexity of quaternary sequences of length pq with low autocorrelation[J]. Journal of Computational and Applied Mathematics, 2014, 259B: 555–560 doi: 10.1016/j.cam.2013.08.003
    EDEMSKIY V and IVANOV A. The linear complexity of balanced quaternary sequences with optimal autocorrelation value[J]. Cryptography and Communications, 2015, 7(4): 485–496 doi: 10.1007/s12095-015-0130-0
    CHEN Zhixiong and EDEMSKIY V. Linear complexity of quaternary sequences over Z4 derived from generalized cyclotomic classes modulo[OL]. arXiv preprint arXiv: 1603.05086, 2016.
    IRELAND K and ROSEN M. A Classical Introduction to Modern Number Theory[M]. Germany: Springer Science & Business Media, 2013: 83–120.
    UDAYA P and SIDDIQI M U. Generalized GMW quadriphase sequences satisfying the Welch bound with equality[J]. Applicable Algebra in Engineering,Communication and Computing, 2000, 10(3): 203–225 doi: 10.1007/s002000050125
    WAN Zhexian. Finite Fields and Galois Rings[M]. Singapore, World Scientific Publishing Company, 2011: 23–25.
    CUSICK T W, DING Gunsheng, and RENVALL A R. Stream Ciphers and Number Theory[M]. Dutch, Elsevier, 2004: 112–113.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2187) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return