Citation: | Lingyun ZHOU, Lixin DING, Maode MA, Wan TANG. Orthogonal Opposition Based Firefly Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(1): 202-209. doi: 10.11999/JEIT180187 |
Firefly Algorithm (FA) may suffer from the defect of low convergence accuracy depending on the complexity of the optimization problem. To overcome the drawback, a novel learning strategy named Orthogonal Opposition Based Learning (OOBL) is proposed and integrated into FA. In OOBL, first, the opposite is calculated by the centroid opposition, making full use of the population search experience and avoiding depending on the system of coordinates. Second, the orthogonal opposite candidate solutions are constructed by orthogonal experiment design, combining the useful information from the individual and its opposite. The proposed algorithm is tested on the standard benchmark suite and compared with some recently introduced FA variants. The experimental results verify the effectiveness of OOBL and show the outstanding convergence accuracy of the proposed algorithm on most of the test functions.
YANG Xinshe. Firefly algorithms for multimodal optimization[C]. International Symposium on Stochastic Algorithms, Berlin, Germany, 2009: 169–178.
|
HASSANZADEH T and KANAN H R. Fuzzy FA: A modified firefly algorithm[J]. Applied Artificial Intelligence, 2014, 28(1): 47–65. doi: 10.1080/08839514.2014.862773
|
HAJI V H and MONJE C A. Fractional-order PID control of a chopper-fed DC motor drive using a novel firefly algorithm with dynamic control mechanism[J]. Soft Computing, 2018, 22(18): 6135–6146. doi: 10.1007/s00500-017-2677-5
|
ZHANG Yong, SONG Xianfang, and GONG Dunwei. A return-cost-based binary firefly algorithm for feature selection[J]. Information Sciences, 2017, 418: 561–574. doi: 10.1016/j.ins.2017.08.047
|
FISTER I, FISTER Jr I, YANG X S, et al. A comprehensive review of firefly algorithms[J]. Swarm and Evolutionary Computation, 2013, 13: 34–46. doi: 10.1016/j.swevo.2013.06.001
|
YU Shuhao, ZHU Shenglong, MA Yanyu, et al. A variable step size firefly algorithm for numerical optimization[J]. Applied Mathematics and Computation, 2015, 263: 214–220. doi: 10.1016/j.amc.2015.04.065
|
WANG Hui, ZHOU Xinyu, SUN Hui, et al. Firefly algorithm with adaptive control parameters[J]. Soft Computing, 2017, 21(17): 5091–5102. doi: 10.1007/s00500-016-2104-3
|
WANG Hui, WANG Wenjun, SUN Hui, et al. Firefly algorithm with random attraction[J]. International Journal of Bio-Inspired Computation, 2016, 8(1): 33–41. doi: 10.1504/ijbic.2016.074630
|
VERMA O P, AGGARWAL D, PATODI T, et al. Opposition and dimensional based modified firefly algorithm[J]. Expert Systems with Applications, 2016, 44: 168–176. doi: 10.1016/j.eswa.2015.08.054
|
GANDOMI A H, YANG X S, TALATAHARI S, et al. Firefly algorithm with chaos[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(1): 89–98. doi: 10.1016/j.cnsns.2012.06.009
|
TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence[C]. International Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, 2005: 695–701.
|
RAHNAMAYAN H, TIZHOOSH H R, and SALAMA M. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64–79. doi: 10.1109/TEVC.2007.894200
|
WANG Hui, WU Zhijian, RAHNAMAYAN S, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181(20): 4699–4714. doi: 10.1016/j.ins.2011.03.016
|
YU Shuhao, ZHU Shenglong, MA Yan, et al. Enhancing firefly algorithm using generalized opposition-based learning[J]. Computing, Springer Vienna, 2015, 97(7): 741–754. doi: 10.1007/s00607-015-0456-7
|
PARK S Y and LEE J J. Stochastic opposition-based learning using a beta distribution in differential evolution[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2184–2194. doi: 10.1109/TCYB.2015.2469722
|
YANG Xinshe. Cuckoo Search and Firefly Algorithm[M]. London, UK: Springer, 2014: 1–26. doi: 10.1007/978-3-319-02141-6.
|
RAHNAMAYAN S, JESUTHASAN J, BOURENNANI F, et al. Computing opposition by involving entire population[C]. IEEE Congress on Evolutionary Computation, Beijin, China, 2014: 1800–1807.
|
方开泰, 刘民千, 周永道. 试验设计与建模[M]. 北京: 高等教育出版社, 2011: 81–101.
FANG Kaitai, LIU Minqian, and ZHOU Yongdao. Design and Modeling of Experiments[M]. Beijing: Higher Education Press, 2011: 81–101.
|
ZHAN Zhihui, ZHANG Jun, LI Yun, et al. Orthogonal learning particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(6): 832–847. doi: 10.1109/TEVC.2010.2052054
|
SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization[R]. Computational Intelligence Laboratory, Zhengzhou University, China and Nanyang Technological, Singapore, Technical Report 201212, 2013.
|
TILAHUN S L and ONG H C. Modified firefly algorithm[J]. Journal of Applied Mathematics, 2012, 12: 2428–2439. doi: 10.1155/2012/467631
|
DERRAC J, CARCIA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(11): 3–18. doi: 10.1016/j.swevo.2011.02.002
|
周凌云, 丁立新, 彭虎, 等. 一种邻域重心反向学习的粒子群优化算法[J]. 电子学报, 2017, 45(11): 2815–2824. doi: 10.3969/j.issn.0372-2112.2017.11.032
ZHOU Lingyun, DING Lixin, PENG Hu, et al. Neighborhood centroid opposition-based particle swarm optimization[J]. Acta Electronica Sinica, 2017, 45(11): 2815–2824. doi: 10.3969/j.issn.0372-2112.2017.11.032
|