Advanced Search
Volume 41 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
Lingyun ZHOU, Lixin DING, Maode MA, Wan TANG. Orthogonal Opposition Based Firefly Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(1): 202-209. doi: 10.11999/JEIT180187
Citation: Lingyun ZHOU, Lixin DING, Maode MA, Wan TANG. Orthogonal Opposition Based Firefly Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(1): 202-209. doi: 10.11999/JEIT180187

Orthogonal Opposition Based Firefly Algorithm

doi: 10.11999/JEIT180187
Funds:  The National Natural Science Foundation of China (61379059), The Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZY18012)
  • Received Date: 2018-02-10
  • Rev Recd Date: 2018-08-23
  • Available Online: 2018-08-29
  • Publish Date: 2019-01-01
  • Firefly Algorithm (FA) may suffer from the defect of low convergence accuracy depending on the complexity of the optimization problem. To overcome the drawback, a novel learning strategy named Orthogonal Opposition Based Learning (OOBL) is proposed and integrated into FA. In OOBL, first, the opposite is calculated by the centroid opposition, making full use of the population search experience and avoiding depending on the system of coordinates. Second, the orthogonal opposite candidate solutions are constructed by orthogonal experiment design, combining the useful information from the individual and its opposite. The proposed algorithm is tested on the standard benchmark suite and compared with some recently introduced FA variants. The experimental results verify the effectiveness of OOBL and show the outstanding convergence accuracy of the proposed algorithm on most of the test functions.

  • loading
  • YANG Xinshe. Firefly algorithms for multimodal optimization[C]. International Symposium on Stochastic Algorithms, Berlin, Germany, 2009: 169–178.
    HASSANZADEH T and KANAN H R. Fuzzy FA: A modified firefly algorithm[J]. Applied Artificial Intelligence, 2014, 28(1): 47–65. doi: 10.1080/08839514.2014.862773
    HAJI V H and MONJE C A. Fractional-order PID control of a chopper-fed DC motor drive using a novel firefly algorithm with dynamic control mechanism[J]. Soft Computing, 2018, 22(18): 6135–6146. doi: 10.1007/s00500-017-2677-5
    ZHANG Yong, SONG Xianfang, and GONG Dunwei. A return-cost-based binary firefly algorithm for feature selection[J]. Information Sciences, 2017, 418: 561–574. doi: 10.1016/j.ins.2017.08.047
    FISTER I, FISTER Jr I, YANG X S, et al. A comprehensive review of firefly algorithms[J]. Swarm and Evolutionary Computation, 2013, 13: 34–46. doi: 10.1016/j.swevo.2013.06.001
    YU Shuhao, ZHU Shenglong, MA Yanyu, et al. A variable step size firefly algorithm for numerical optimization[J]. Applied Mathematics and Computation, 2015, 263: 214–220. doi: 10.1016/j.amc.2015.04.065
    WANG Hui, ZHOU Xinyu, SUN Hui, et al. Firefly algorithm with adaptive control parameters[J]. Soft Computing, 2017, 21(17): 5091–5102. doi: 10.1007/s00500-016-2104-3
    WANG Hui, WANG Wenjun, SUN Hui, et al. Firefly algorithm with random attraction[J]. International Journal of Bio-Inspired Computation, 2016, 8(1): 33–41. doi: 10.1504/ijbic.2016.074630
    VERMA O P, AGGARWAL D, PATODI T, et al. Opposition and dimensional based modified firefly algorithm[J]. Expert Systems with Applications, 2016, 44: 168–176. doi: 10.1016/j.eswa.2015.08.054
    GANDOMI A H, YANG X S, TALATAHARI S, et al. Firefly algorithm with chaos[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(1): 89–98. doi: 10.1016/j.cnsns.2012.06.009
    TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence[C]. International Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, 2005: 695–701.
    RAHNAMAYAN H, TIZHOOSH H R, and SALAMA M. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64–79. doi: 10.1109/TEVC.2007.894200
    WANG Hui, WU Zhijian, RAHNAMAYAN S, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181(20): 4699–4714. doi: 10.1016/j.ins.2011.03.016
    YU Shuhao, ZHU Shenglong, MA Yan, et al. Enhancing firefly algorithm using generalized opposition-based learning[J]. Computing, Springer Vienna, 2015, 97(7): 741–754. doi: 10.1007/s00607-015-0456-7
    PARK S Y and LEE J J. Stochastic opposition-based learning using a beta distribution in differential evolution[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2184–2194. doi: 10.1109/TCYB.2015.2469722
    YANG Xinshe. Cuckoo Search and Firefly Algorithm[M]. London, UK: Springer, 2014: 1–26. doi: 10.1007/978-3-319-02141-6.
    RAHNAMAYAN S, JESUTHASAN J, BOURENNANI F, et al. Computing opposition by involving entire population[C]. IEEE Congress on Evolutionary Computation, Beijin, China, 2014: 1800–1807.
    方开泰, 刘民千, 周永道. 试验设计与建模[M]. 北京: 高等教育出版社, 2011: 81–101.

    FANG Kaitai, LIU Minqian, and ZHOU Yongdao. Design and Modeling of Experiments[M]. Beijing: Higher Education Press, 2011: 81–101.
    ZHAN Zhihui, ZHANG Jun, LI Yun, et al. Orthogonal learning particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(6): 832–847. doi: 10.1109/TEVC.2010.2052054
    SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization[R]. Computational Intelligence Laboratory, Zhengzhou University, China and Nanyang Technological, Singapore, Technical Report 201212, 2013.
    TILAHUN S L and ONG H C. Modified firefly algorithm[J]. Journal of Applied Mathematics, 2012, 12: 2428–2439. doi: 10.1155/2012/467631
    DERRAC J, CARCIA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(11): 3–18. doi: 10.1016/j.swevo.2011.02.002
    周凌云, 丁立新, 彭虎, 等. 一种邻域重心反向学习的粒子群优化算法[J]. 电子学报, 2017, 45(11): 2815–2824. doi: 10.3969/j.issn.0372-2112.2017.11.032

    ZHOU Lingyun, DING Lixin, PENG Hu, et al. Neighborhood centroid opposition-based particle swarm optimization[J]. Acta Electronica Sinica, 2017, 45(11): 2815–2824. doi: 10.3969/j.issn.0372-2112.2017.11.032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (1816) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return