Advanced Search
Volume 40 Issue 12
Nov.  2018
Turn off MathJax
Article Contents
Jiusong HU, Hongli LIU, Guoxuan XIAO, Kun XU. Adaptive Affine Propagation Clustering Algorithm for WiFi Indoor Positioning[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2889-2895. doi: 10.11999/JEIT180186
Citation: Jiusong HU, Hongli LIU, Guoxuan XIAO, Kun XU. Adaptive Affine Propagation Clustering Algorithm for WiFi Indoor Positioning[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2889-2895. doi: 10.11999/JEIT180186

Adaptive Affine Propagation Clustering Algorithm for WiFi Indoor Positioning

doi: 10.11999/JEIT180186
Funds:  The Central State-Owned Capital Management and Budget Project (2013-470), The National Natural Science Foundation of China (61771191)
  • Received Date: 2018-02-10
  • Rev Recd Date: 2018-09-03
  • Available Online: 2018-09-10
  • Publish Date: 2018-12-01
  • There are a large number of indoor WiFi signals which can be used for indoor positioning. Although many WiFi indoor positioning technology is proposed, it's positioning accuracy still does not meet the actual application requirements. For this problem, an Adaptive Affinity Propagation Clustering (AAPC) algorithm is proposed to improve the clustering quality of WiFi fingerprint, thus improving the positioning accuracy. The AAPC algorithm generates different clustering results by dynamically adjusting parameters, then cluster validity indices are used to select the best ones. A large number of real environmental data are collected and tested. The experimental results show that the clustering results generated by AAPC algorithm have higher positioning accuracy.
  • loading
  • DAVIDSON P and PICHE R. A survey of selected indoor positioning methods for smartphones[J]. IEEE Communications Surveys and Tutorials, 2017, 19(2): 1347–1370 doi: 10.1109/comst.2016.2637663
    ZHANG Weile, YIN Qinye, CHEN Hongyang, et al. Distributed angle estimation for localization in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 527–537 doi: 10.1109/TWC.2012.121412.111346
    LIU Bin, CHEN Hongyang, ZHONG Ziguo, et al. Asymmetrical round trip based synchronization-free localization in large-scale underwater sensor networks[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3532–3542 doi: 10.1109/TWC.2010.090210.100146
    CHEN Hongyang, LIU Bin, HUANG Pei, et al. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks[J]. Mobile Networks&Applications, 2012, 17(1): 90–99 doi: 10.1007/s11036-010-0281-3
    HOSSAIN A K M M and SOH W. A survey of calibration-free indoor positioning systems[J]. Computer Communications, 2015, 66: 1–13 doi: 10.1016/j.comcom.2015.03.001
    FENG Chen, AU W S A, VALAEE S, et al. Received-signal-strength-based indoor positioning using compressive sensing[J]. IEEE Transactions on Mobile Computing, 2012, 11(12): 1983–1993 doi: 10.1109/tmc.2011.216
    周牧, 唐云霞, 田增山, 等. 基于流形插值数据库构建的WLAN室内定位算法[J]. 电子与信息学报, 2017, 39(8): 1826–1834 doi: 10.11999/JEIT161269

    ZHOU Mu, TANG Yunxia, TIAN Zengshan, et al. WLAN indoor localization algorithm based on manifold interpolation database construction[J]. Journal of Electronics&Information Technology, 2017, 39(8): 1826–1834 doi: 10.11999/JEIT161269
    BAI Sidong and WU Tong. Analysis of K-means algorithm on fingerprint based indoor localization system[C]. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Chengdu, China, 2013: 44–48.
    ZHANG Liwen, WANG Yunjia, and WANG Xingfeng. Affinity propagation clustering for fingerprinting database in indoor localization[J]. Bulletin of Surveying and Mapping, 2014(12): 36–39 doi: 10.13474/j.cnki112246.2014.0392
    BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. Proceedings-IEEE INFOCOM, TelAviv, Israel, 2000, 2: 775–784.
    YOUSSEF M and AGRAWALA A. The horus WLAN location determination system[C]. Proceedings of the Third International Conference on Mobile Systems, Applications, and Services (MobiSys 2005). Seattle, USA, 2005: 205–218.
    李丽娜, 马俊, 龙跃, 等. 基于LANDMARC与压缩感知的双段式室内定位算法[J]. 电子与信息学报, 2016, 38(7): 1631–1637 doi: 10.11999/JEIT151050

    LI Lina, MA Jun, LONG Yue, et al. Double stage indoor localization algorithm based on LANDMARC and compressive sensing[J]. Journal of Electronics&Information Technology, 2016, 38(7): 1631–1637 doi: 10.11999/JEIT151050
    CASO G, NARDIS L D, and BENEDETTO M G D. A mixed approach to similarity metric selection in affinity propagation-based WiFi fingerprinting indoor positioning[J]. Sensors, 2015, 15(11): 27692–27720 doi: 10.3390/s151127692
    AU A W S, FENG Chen, VALAEE S, et al. Indoor tracking and navigation using received signal strength and compressive sensing on a mobile device[J]. IEEE Transactions on Mobile Computing, 2013, 12(10): 2050–2062 doi: 10.1109/TMC.2012.175
    FREY B J and DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972–976 doi: 10.1126/science.1136800
    FREY L P and STATISTICAL I G. Affinity propagation (University of Toronto) [OL]. avail-able: https://www.psi.toronto.edu/affinitypropagation/software/, 2018.
    YU Jian and JIA Caiyan. Convergence analysis of affinity propagation[C]. International Conference on Knowledge Science, Engineering and Management. Berlin, Germany, 2009: 54–65.
    王开军, 张军英, 李丹, 等. 自适应仿射传播聚类[J]. 自动化学报, 2008, 33(12): 1242–1246 doi: 10.16383/j.aas.2007.12.017

    WANG Kaijun, ZHANG Junying, LI Dan, et al. Adaptive affinity propagation clustering[J]. Acta Automatica Sinica, 2008, 33(12): 1242–1246 doi: 10.16383/j.aas.2007.12.017
    YU Jian and CHENG Qiansheng. The upper bound of the optimal number of clusters in fuzzy clustering[J]. Science in China Series:Information Sciences, 2001, 44(2): 119–125 doi: 10.1007/bf02713970
    ARBELAITZ O, GURRUTXAGA I, MUGUERZA J, et al. An extensive comparative study of cluster validity indices[J]. Pattern Recognition, 2013, 46(1): 243–256 doi: 10.1016/j.patcog.2012.07.021
    SUROSO D J, CHERNTANOMWONG P, SOORAKSA P, et al. Location fingerprint technique using fuzzy C-means clustering algorithm for indoor localization[C]. TENCON 2011–2011 IEEE Region 10 Conference. IEEE, Bali, Indonesia, 2012: 88–92.
    BLAKE C L and MERZ C J. UCI repository of machine learning databases (University of California) [OL], available: http://archive.ics.uci.edu/ml/, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1696) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return