Citation: | Bing CHEN, Yufei ZHA, Yunqiang LI, Shengjie ZHANG, Yuanqiang ZHANG. Shift-variant Similarity Learning for Person Re-identification[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2381-2387. doi: 10.11999/JEIT180184 |
周全, 魏昕, 陈建新, 等. 一种基于稠密SIFT特征对齐的稀疏表达人脸识别算法[J]. 电子与信息学报, 2015, 37(8): 1913–1919 doi: 10.11999/JEIT141194
ZHOU Quan, WEI Xin, CHEN Jianxin, et al. Improved sparse representation algorithm for face recognition via dense SIFT feature alignment[J]. Journal of Electronics&Information Technology, 2015, 37(8): 1913–1919 doi: 10.11999/JEIT141194
|
张洁玉, 赵鸿萍, 陈曙. 自适应阈值及加权局部二值模式的人脸识别[J]. 电子与信息学报, 2014, 36(6): 1327–1333 doi: 10.3724/SP.J.1146.2013.01218
ZHANG Jieyu, ZHAO Hongping, and CHEN Shu. Face recognition based on weighted local binary pattern with adaptive threshold[J]. Journal of Electronics&Information Technology, 2014, 36(6): 1327–1333 doi: 10.3724/SP.J.1146.2013.01218
|
KOSTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2288–2295.
|
XIAO Tong, LI Hongsheng, OUYANG Wanli, et al. Learning deep feature representations with domain guided dropout for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1249–1258.
|
DING Shengyong, LIN Liang, WANG Guangrun, et al. Deep feature learning with relative distance comparison for person re-identification[J]. Pattern Recognition, 2015, 48(10): 2993–3003 doi: 10.1016/j.patcog.2015.04.005
|
ZHENG Zhedong, ZHENG Liang, and YANG Yi. A discriminatively learned CNN embedding for person re-identification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2017, 14(1): 13–28 doi: 10.1145/3159171
|
YI Dong, LEI Zhen, LIAO Shengcai, et al. Deep metric learning for person re-identification[C]. International Conference on Pattern Recognition, Stockholm, Sweden, 2014: 24–28.
|
LI Wei, ZHAO Rui, XIAO Tong, et al. Deep reid: Deep filter pairing neural network for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 152–159.
|
AHMED E, JONES M, and MARKS T K. An improved deep learning architecture for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3908–3916.
|
WANG Faqiang, ZUO Wangmeng, LIN Liang, et al. Joint learning of single-image and cross-image representations for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, LasVegas, USA, 2016: 1288–1296.
|
CHOPRA S, HADSELL R, and LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 539–546.
|
SONG H O, XIANG Y, JEGELKA S, et al. Deep metric learning via lifted structured feature embedding[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4004–4012.
|
HIRZER M, ROTH P M, KOSTINGER M, et al. Relaxed pairwise learned metric for person re-identification[C]. European Conference on Computer Vision, Florence, Italy, 2012: 780–793.
|
LIU Weiyang, WEN Yangdong, YU Zhiding, et al. Sphereface: Deep hypersphere embedding for face recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6738–6746.
|
WANG Jian, ZHOU Feng, WEN Shilei, et al. Deep metric learning with angular loss[C]. IEEE International Conference on Computer Vision, Honolulu, USA, 2017: 2593–2601.
|
PEDAGADI S, ORWELL J, VELASTIN S A, et al. Local fisher discriminant analysis for pedestrian re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3318–3325.
|
XIONG Fei, GOU Mengran, CAMPS O, et al. Person re-identification using kernel-based metric learning methods[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 1–16.
|
VARIOR R R, HALOI M, and WANG Gang. Gated siamese convolutional neural network architecture for human re-identification[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 791–808.
|
VARIOR R R, SHUAI B, LU Jiwen, et al. A siamese long short-Term memory architecture for human re-identification[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 135–153.
|
CHENG De, GONG Yihong, ZHOU Sanping, et al. Person re-identification by multi-channel parts-based CNN with improved triplet loss function[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1335–1344.
|
VAN DER MAATENL J P and HINTON G E. Visualizing high dimensional data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2): 2579–2605.
|
ZHANG Li, XIANG Tao, and GONG Shaogang. Learning a discriminative null space for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1239–1248.
|
CHENG De, GONG Yi, LI Zhe, et al. Deep feature learning via structured graph laplacian embedding for person re-Identification[OL]. arXiv preprint arXiv: 1707.07791, 2017.
|
ZHOU Sanping, WANG Jinjun, WANG Jiayun, et al. Point to set similarity based deep feature learning for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5028–5037.
|
BARBOSA I B, CRISTANI M, CAPUTO B, et al. Looking beyond appearances: Synthetic training data for deep CNNs in re-identification[OL]. arXiv preprint arXiv: 1701.03153, 2017.
|
CHEN Weihua, CHEN Xiaotang, ZHANG Jianguo, et al. Beyond triplet loss: A deep quadruplet network for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1320–1329.
|