Advanced Search
Volume 40 Issue 11
Oct.  2018
Turn off MathJax
Article Contents
Wei LI, Weibo DENG, Qiang YANG, Marco Donald MIGLIORE. Deterministic Compressed Sensing Sampling Strategy for Diagnosis of Defective Array Elements Using Far-field Measurements[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2541-2546. doi: 10.11999/JEIT180175
Citation: Wei LI, Weibo DENG, Qiang YANG, Marco Donald MIGLIORE. Deterministic Compressed Sensing Sampling Strategy for Diagnosis of Defective Array Elements Using Far-field Measurements[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2541-2546. doi: 10.11999/JEIT180175

Deterministic Compressed Sensing Sampling Strategy for Diagnosis of Defective Array Elements Using Far-field Measurements

doi: 10.11999/JEIT180175
Funds:  The Short-term Visiting Abroad Program for Doctoral Candidates of Harbin Institute of Technology (AUDQ9802200116), The Fundamental Research Funds for the Central Universities (HIT.MKSTISP.2016 13, HIT.MKSTISP.2016 26)
  • Received Date: 2018-02-09
  • Rev Recd Date: 2018-08-22
  • Available Online: 2018-08-28
  • Publish Date: 2018-11-01
  • The structured random sampling strategy adopted in array diagnosis has negative influence on the performance of measurement matrix. Therefore, a compressed sensing based deterministic sampling strategy to diagnose defective array elements using far-field measurements is investigated in this paper. In the case of the number of failed elements satisfies sparsity, the sparse vector is constructed by subtracting incentives of reference array without failures and the array under test. Deterministic Partial Fourier Matrix (DPFM) is then formulated by the proposed strategy as the measurement matrix. Finally, accurate diagnosis with high probability is achieved by l1 norm minimization. Theoretical analysis and simulation results demonstrate that the proposed method can avoid the adverse impact on the performance of measurement matrix effectively arising from the random distribution of sampling positions, simplify the sampling procedure and improve the probability of success rate of diagnosis.
  • loading
  • 李玮, 邓维波, 杨强, 等. 采用压缩感知的阵列失效单元诊断方法[J]. 西安电子科技大学学报, 2018, 45(2): 160–165 doi: 10.3969/j.issn.1001-2400.2018.02.027

    LI Wei, DENG Weibo, YANG Qiang, et al. Diagnosis method for defective array elements based on compressive sensing[J]. Journal of Xidian University, 2018, 45(2): 160–165 doi: 10.3969/j.issn.1001-2400.2018.02.027
    LEE J J, FERREN E M, WOOLLEN D P, et al. Near-field probe used as a diagnostic tool to locate defective elements in an array antenna[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(6): 884–889 doi: 10.1109/8.1192
    BUCCI O M, MIGLIORE M D, PANARIELLO G, et al. Accurate diagnosis of conformal arrays from near field data using the matrix method[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(3): 1114–1120 doi: 10.1109/TAP.2004.842656
    MIGLIORE M D. A compressed sensing approach for array diagnosis from a small set of near-field measurements[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(6): 2127–2133 doi: 10.1109/TAP.2011.2144556
    MIGLIORE M D. Array diagnosis from far-field data using the theory of random partial fourier matrices[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 745–748 doi: 10.1109/LAWP.2013.2270931
    OLIVERI G, ROCCA P, and MASSA A. Reliable diagnosis of large linear arrays−A Bayesian compressive sensing approach[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(10): 4627–4636 doi: 10.1109/TAP.2012.2207344
    INCE T and OGUCU G. Array failure diagnosis using nonconvex compressed sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 992–995 doi: 10.1109/LAWP.2015.2489760
    FORNASIER M and RAUHUT H. Handbook of Mathematical Methods in Imaging[M]. New York, NY, USA: Springer, 2011: 205–206.
    芦存博, 肖嵩, 权磊. 基于二进制序列族的压缩感知测量矩阵构造[J]. 电子与信息学报, 2016, 38(7): 1682–1688 doi: 10.11999/JEIT151076

    LU Cunbo, XIAO Song, and QUAN Lei. Construction of compressed sensing measurement matrix based on binary sequence family[J]. Journal of Electronics&Information Technology, 2016, 38(7): 1682–1688 doi: 10.11999/JEIT151076
    THILL M and HASSIBI B. Group frames with few distinct inner products and low coherence[J]. IEEE Transactions on Signal Processing, 2015, 63(19): 5222–5237 doi: 10.1109/TSP.2015.2450195
    APPLEBAUM L, BAJWA W U, CALDERBANK A R, et al. Deterministic pilot sequences for sparse channel estimation in OFDM systems[C]. 2011 17th International Conference on Digital Signal Processing, Corfu, Greece, 2011: 1–7.
    HAUPT J, APPLEBAUM L, and NOWARK R. On the restricted isometry of deterministically subsampled Fourier matrices[C]. 2010 44th Annual Conference on Information Sciences and Systems, Princeton, USA, 2010: 1–6.
    XU Guangwu and XU Zhiqiang. Compressed sensing matrices from Fourier matrices[J]. IEEE Transactions on Information Theory, 2015, 61(1): 469–478 doi: 10.1109/TIT.2014.2375259
    XIONG Can and XIAO Gaobiao. Diagnose element failures of phased antenna arrays with a single fixed receiving probe[C]. 2017 International Applied Computational Electromagnetics Society Symposium, Suzhou, China, 2017: 1–2.
    MOKHTAR M, HAMILA R, BAJWA W U, et al. Deterministic measurement procedures for diagnosis of massive uniform linear antenna arrays[C]. 2016 IEEE Global Conference on Signal and Information Processing, Washington, DC, USA, 2016: 1388–1392.
    DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924 doi: 10.1109/JPROC.2010.2045630
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1486) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return