| Citation: | Xing WEI, Zhihong HUANG, Haigang YANG. High Throughput Dual-mode Reconfigurable Floating-point FFT Processor[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3042-3050. doi: 10.11999/JEIT180170 | 
 
	                | 吕倩, 苏涛. 基于改进型快速双线性参数估计的复杂运动目标ISAR成像[J]. 电子与信息学报, 2016, 38(9): 2301–2308 doi:  10.11999/JEIT151359 LÜ Qian and SU Tao. ISAR imaging of targets with complex motion based on the modified fast bilinear parameter estimation[J]. Journal of Electronics&Information Technology, 2016, 38(9): 2301–2308 doi:  10.11999/JEIT151359 | 
| HUANG Shenjui and CHEN S. A high-throughput radix-16 FFT processor with parallel and normal input/output ordering for IEEE 802.15.3c systems[J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, 2012, 59(8): 1752–1765 doi:  10.1109/TCSI.2011.2180430 | 
| LAN G and FRANK H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House Publishers, 2005: 154–210. | 
| 陈杰男, 费超, 袁建生, 等. 超高速全并行快速傅里叶变换器[J]. 电子与信息学报, 2016, 38(9): 2410–2414 doi:  10.11999/JEIT160036 CHEN Jienan, FEI Chao, YUAN Jiansheng, et al. An ultra-high-speed fully-parallel fast Fourier transform design[J]. Journal of Electronics&Information Technology, 2016, 38(9): 2410–2414 doi:  10.11999/JEIT160036 | 
| JONGWOOK S and EARL E. Improved architectures for a floating-point fused dot product unit[C]. IEEE Symposium on Computer Arithmetic, Austin, USA, 2013: 41–48. doi:  10.1109/ARITH.2013.26. | 
| JONGWOOK S and EARL E. Improved architectures for a fused floating-point add-subtract unit[J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, 2012, 59(10): 2285–2291 doi:  10.1109/TCSI.2012.2188955 | 
| CHO T and LEE H. A high-speed low-complexity modified radix-25 FFT processor for high rate WPAN applications[J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems, 2013, 21(1): 187–191 doi:  10.1109/TVLSI.2011.2182068 | 
| WANG Chao, YAN Yuwei, and FU Xiaoyu. A high-throughput low-complexity radix-24-22-23 FFT/IFFT processor with parallel and normal input/output order for IEEE 802.11ad systems[J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems, 2015, 23(11): 2728–2732 doi:  10.1109/TVLSI.2014.2365586 | 
| WANG Mingyu and LI Zhaolin. A hybrid SDC/SDF architecture for area and power minimization of floating-point FFT computations[C]. IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2170–2173. doi:  10.1109/ISCAS.2016.7539011. | 
| EARL E and HANI H. FFT implementation with fused floating-point operations[J]. IEEE Transactions on Computers, 2012, 61(2): 284–288 doi:  10.1109/TC.2010.271 | 
| TANG S N, TSAI J W, and CHANG T Y. A 2.4-GS/s FFT processor for OFDM-based WPAN applications[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2010, 57(6): 451–455 doi:  10.1109/TCSII.2010.2048373 | 
| NIE Zedong, ZHANG Fengjuan, LI Jie, et al. Low-power digital ASIC for on-chip spectral analysis of low-frequency physiological signals[J]. Journal of Semiconductors, 2012, 33(6): 67–70 doi:  10.1088/1674-4926 | 
| IEEE 754-2008. IEEE Standard for Floating-Point Arithmetic[S]. 2008. doi:  10.1109/IEEESTD.2008.5976968. | 
| PETER K. Correcting the normalization shift of redundant binary representations[J]. IEEE Transactions on Computers, 2009, 58(10): 1453–1439 doi:  10.1109/TC.2009.38 | 
| YANG C H, YU T H, and DEJAN M. Power and area minimization of reconfigurable FFT processors: A 3GPP-LTE example[J]. IEEE Journal of Solid-State Circuits, 2011, 47(3): 757–768 doi:  10.1109/JSSC.2011.2176163 | 
| MARIO G, HUANG S J, CHEN S G, et al. The serial commutator FFT[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2016, 63(10): 974–978 doi:  10.1109/TCSII.2016.2538119 | 
| YANG K J, TSAI S H, and CHUANG G. MDC FFT/IFFT processor with variable length for MIMO-OFDM systems[J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems, 2013, 21(4): 720–731 doi:  10.1109/TVLSI.2012.2194315 | 
