Advanced Search
Volume 40 Issue 12
Nov.  2018
Turn off MathJax
Article Contents
Lun TANG, Yingjie SHI, Xixi YANY, Qianbin CHEN. Network Slice Virtual Resource Allocation Algorithm Based on Constrained Markov Decision Process in Non-orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2962-2969. doi: 10.11999/JEIT180131
Citation: Lun TANG, Yingjie SHI, Xixi YANY, Qianbin CHEN. Network Slice Virtual Resource Allocation Algorithm Based on Constrained Markov Decision Process in Non-orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2962-2969. doi: 10.11999/JEIT180131

Network Slice Virtual Resource Allocation Algorithm Based on Constrained Markov Decision Process in Non-orthogonal Multiple Access

doi: 10.11999/JEIT180131
Funds:  The National Natural Science Foundation of China (61571073)
  • Received Date: 2018-01-30
  • Rev Recd Date: 2018-08-16
  • Available Online: 2018-08-23
  • Publish Date: 2018-12-01
  • An adaptive virtual resource allocation algorithm is proposed based on Constrained Markov Decision Process (CMDP) for wireless access network slice virtual resource allocation. First of all, this algorithm in the Non-Orthogonal Multiple Access (NOMA) system, uses the user outage probability and the slice queues as constraints, uses the total rate of slices as a reward to build a resource adaptive problem using the CMDP theory. Secondly, the post-decision state is defined to avoid the expectation operation in the optimal value function. Furthermore, aiming at the problem of " dimensionality disaster” of MDP, based on the approximate dynamic programming theory, a basis function for the assignment behavior is designed to replace the post-decision state space and to reduce the computational dimension. Finally, an adaptive virtual resource allocation algorithm is designed to optimize the slicing performance. The simulation results show that the algorithm can improve the performance of the system and meet the service requirements of slicing.
  • loading
  • 唐伦, 张亚, 梁荣, 等. 基于网络切片的网络效用最大化虚拟资源分配算法[J]. 电子与信息学报, 2017, 39(8): 1812–1818 doi: 10.11999/JEIT161322

    TANG Lun, ZHANG Ya, LIANG Rong, et al. Virtual resource allocation algorithm for network utility maximization based on network slicing[J]. Journal of Electronics&Information Technology, 2017, 39(8): 1812–1818 doi: 10.11999/JEIT161322
    SALLENT O, PEREZ-ROMERO J, FERRUS R, et al. On radio access network slicing from a radio resource management perspective[J]. IEEE Wireless Communications, 2017, 24(5): 166–174 doi: 10.1109/MWC.2017.1600220WC
    PARSAEEFARD S, DAWADI R, DERAKHSHANI M, et al. Joint user-association and resource-allocation in virtualized wireless networks[J]. IEEE Access, 2016, 4: 2738–2750 doi: 10.1109/ACCESS.2016.2560218
    BEGA D, GRAMAGLIA M, BANCHS A, et al. Optimising 5G infrastructure markets: The business of network slicing[C]. IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9.
    AKPAKWU G A, SILVA B J, HANCKE G P, et al. A survey on 5G networks for the internet of things: Communication technologies and challenges[J]. IEEE Access, 2018, 6: 3619–3647 doi: 10.1109/ACCESS.2017.2779844
    ZHANG Zihan, XIA Qinghong, YU Guanding, et al. Power control, user scheduling and resource allocation for downlink NOMA systems with imperfect channel state information[C]. 2017 9th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2017: 1–6.
    ZHU Jianyue, WANG Jiaheng, HUANG Yongming, et al. On optimal power allocation for downlink non-orthogonal multiple access systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2744–2757 doi: 10.1109/JSAC.2017.2725618
    FANG Fang, ZHANG Haijun, CHENG Julian, et al. Joint user scheduling and power allocation optimization for energy efficient NOMA systems with imperfect CSI[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2874–2885 doi: 10.1109/JSAC.2017.2777672
    DAWADI R, PARSAEEFARD S, DERAKHSHANI M, et al. Power-efficient resource allocation in NOMA virtualized wireless networks[C]. IEEE Global Communications Conference, Washington D.C., USA, 2016: 1–6.
    ZHANG Qi, ZHU Quanyan, ZHANI M F, et al. Dynamic service placement in geographically distributed clouds[C]. 2012 IEEE 32nd International Conference on Distributed Computing Systems, Macau, China, 2012: 526–535.
    ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain Non-Orthogonal Multiple Access (NOMA) in 5G systems: potentials and challenges[J]. IEEE Communications Surveys&Tutorials, 2017, 19(2): 721–742 doi: 10.1109/COMST.2016.2621116
    CHEN Tianyi, MOKHTARI A, WANG Xin, et al. Stochastic averaging for constrained optimization with application to online resource allocation[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3078–3093 doi: 10.1109/TSP.2017.2679690
    POWELL W B. Approximate Dynamic Programming: Solving the Curses of Dimensionality[M]. NJ, Princeton: Wiley, 2007: 129–144.
    FANG Fang, ZHANG Haijun, CHENG Julian, et al. Energy-efficient resource scheduling for NOMA systems with imperfect channel state information[C]. IEEE International Conference on Communications, Paris, France, 2017: 1–5.
    RAI R, ZHU H, and WANG Jiangzhou. Resource scheduling in Non-Orthogonal Multiple Access (NOMA) based cloud-RAN systems[C]. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York City, USA, 2017: 418–422.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1587) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return