Advanced Search
Volume 40 Issue 11
Oct.  2018
Turn off MathJax
Article Contents
Hongchang CHEN, Qian XU, Ruiyang HUANG, Xiaotao CHENG, Zheng WU. User Identification Across Social Networks Based on User Trajectory[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2758-2764. doi: 10.11999/JEIT180130
Citation: Hongchang CHEN, Qian XU, Ruiyang HUANG, Xiaotao CHENG, Zheng WU. User Identification Across Social Networks Based on User Trajectory[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2758-2764. doi: 10.11999/JEIT180130

User Identification Across Social Networks Based on User Trajectory

doi: 10.11999/JEIT180130
Funds:  The National Natural Science Foundation of China (61521003)
  • Received Date: 2018-01-30
  • Rev Recd Date: 2018-06-11
  • Available Online: 2018-06-30
  • Publish Date: 2018-11-01
  • The performance of trajectory based user identification is poor since the existing methods ignore the order feature of location sequence. To solve this problem, a Cross Domain Trajectory matching algorithm based on Paragraph2vec (CDTraj2vec) is proposed. Firstly, the user trajectory is transformed to the grid representation which is easy to handle. The PV-DM model in the Paragraph2vec algorithm is utilized for extracting order feature of location sequence in trajectory. Then the original user trajectories are divided by a certain time size and distance scale to construct a training sample suitable for training PV-DM model. The PV-DM model is trained by different types of training samples, and the vector representation of the user trajectories is obtained. Finally, the matching of the trajectory is determined by the user trajectory vector. Experimental results on BrightKite shows that the F-measure is improved by 2%~4% compared with the existing frequency based and distance based algorithm. The proposed algorithm can effectively extract the order feature of location sequence, and realize the trajectory based user identification across social networks.
  • 桑基韬, 路冬媛, 徐常胜. 基于共同用户的跨网络分析: 社交媒体大数据中的多源问题[J]. 科学通报, 2014, 59(36): 3554–3560 doi: 10.1360/n972014-00292

    SANG Jitao, LU Dongyuan, and XU Changsheng. Overlapped user-based cross-network analysis: Exploring variety in big social media data[J]. Chinese Science Bulletin, 2014, 59(36): 3554–3560 doi: 10.1360/n972014-00292
    GONZÁLEZ M C, HIDALGO C A, and BARABÁSI A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453(7196): 779–782 doi: 10.1038/nature06958
    CAO Wei, WU Zhengwei, WANG Dong, et al. Automatic user identification method across heterogeneous mobility data sources[C]. IEEE International Conference on Data Engineering, Helsinki, Finland, 2016: 978–989.
    HAO Tianyi, ZHOU Jingbo, CHENG Yunsheng, et al. User identification in cyber-physical space: A case study on mobile query logs and trajectories[C]. GIS′16 Proceedings of the 24th ACM International Conference on Advances in Geographic Information Systems, California, USA, 2016: 1–4.
    HAN Xiaohui, WANG Lianhai, XU Shujiang, et al. Linking social network accounts by modeling user spatiotemporal habits[C]. IEEE International Conference on Intelligence and Security Informatics, Beijing, China, 2017: 19–24.
    RIEDERER C, KIM Y, CHAINTREAU A, et al. Linking users across domains with location data: Theory and validation[C]. WWW′16 Proceedings of the 25th International Conference on World Wide Web. Montréal, Canada, 2016: 707–719.
    HAN Xiaohui, WANG Lianhai, XU Lijuan, et al. Social Media account linkage using user-generated geo-location data[C]. Intelligence and Security Informatics, Tucson, USA, 2016: 157–162.
    LE Q and MIKOLOV T. Distributed representations of sentences and documents[C]. International Conference on International Conference on Machine Learning, Beijing, China, 2014: II-1188.
    殷浩腾, 刘洋. 基于社交属性的时空轨迹语义分析[J]. 中国科学: 信息科学, 2017, 47(8): 1051–1065 doi: 10.1360/N112016-00310

    YIN Haoteng and LIU Yang. Semantic analysis of spatial temporal trajectory in LBSNs[J]. Scientia Sinica(Informationis), 2017, 47(8): 1051–1065 doi: 10.1360/N112016-00310
    MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]. International Conference on Neural Information Processing Systems, Daegu, SUKO. 2013: 3111–3119.
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 466–468.
    吴铮, 于洪涛, 刘树新, 等. 基于信息熵的跨社交网络用户身份识别方法[J]. 计算机应用, 2017, 37(8): 2374–2380 doi: 10.11772/j.issn.1001-9081.2017.08.2374

    WU Zheng, YU Hongtao, LIU Shuxin, et al. User identification across multiple social networks based on information entropy[J]. Journal of Computer Applications, 2017, 37(8): 2374–2380 doi: 10.11772/j.issn.1001-9081.2017.08.2374
    ZHENG Yu, XIE Xing, and MA Weiying. GeoLife: A collaborative social networking service among user, location and trajectory[J]. Bulletin of the Technical Committee on Data Engineering, 2010, 33(2): 32–39.
    CHAINTREAU A. COMS 6998: Social Networks[EB/OL]. http://socialnetworksfall14.wikischolars.columbia.edu/, 2014-10/2017-12.
    CHEN Zaiben, SHEN Hengtao, ZHOU Xiaofang, et al. Searching trajectories by locations: An efficiency study[C]. International Conference Proceedings, Association for Computing Machinery, Indianapolis, Indiana, USA, 2010: 255–266.
  • Cited by

    Periodical cited type(17)

    1. 王庚润. 网络空间用户身份对齐技术研究及应用综述. 计算机科学. 2024(05): 12-20 .
    2. 周小涵,贾鹏,杨频,寇蒋恒,刘鑫哲. 基于合并子图的双通道跨网络用户身份识别. 四川大学学报(自然科学版). 2024(04): 9-19 .
    3. 刘政. 基于轨迹数据的用户身份匹配方法研究综述. 山东交通科技. 2024(05): 126-128+136 .
    4. 雷天亮,吉立新,王庚润,刘树新,巫岚. 基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型. 电子学报. 2024(11): 3741-3750 .
    5. 张洋,马强. 基于时空Transformer-encoder的跨社交网络用户匹配方法. 计算机应用研究. 2024(12): 3742-3748 .
    6. 戴军,马强. 基于用户签到的跨社交网络用户匹配. 计算机工程与应用. 2023(02): 76-84 .
    7. 马强,戴军. 基于深度学习的跨社交网络用户匹配方法. 电子与信息学报. 2023(07): 2650-2658 . 本站查看
    8. 栾孟孟,赵涛,卞怡倩. 基于深度学习的跨社交网络用户身份识别研究. 衡水学院学报. 2022(01): 5-9 .
    9. 苏俊杰,兰培真. 基于层次注意力孪生网络的船舶身份甄别. 大连海事大学学报. 2022(02): 31-39 .
    10. 蔡柔丹. 一种基于用户异步轨迹的身份识别智能方法. 测绘通报. 2022(07): 158-162+167 .
    11. 胡三宁,李玉祥. 基于多源数据整合的跨社交网络用户匹配方法. 计算机仿真. 2021(04): 352-355+466 .
    12. 胡军,杨冬梅,刘立,钟福金. 融合节点状态信息的跨社交网络用户对齐. 山东大学学报(工学版). 2021(06): 49-58 .
    13. 黄容生,刘增才,袁小凯,李果. 国密算法下网络用户身份识别的系统研究. 电子设计工程. 2020(07): 147-150+155 .
    14. 程晓涛,吉立新,尹赢,黄瑞阳. 基于D-S证据理论的网络表示融合方法. 电子学报. 2020(05): 854-860 .
    15. 王前东. 经典轨迹的鲁棒相似度量算法. 电子与信息学报. 2020(08): 1999-2005 . 本站查看
    16. 栾孟孟,赵涛,杨星华,李晓宇,张杰. 国内外跨社交网络用户身份识别综述. 齐鲁工业大学学报. 2020(04): 55-60 .
    17. 李万林,王超,许国良,雒江涛,张轩. 基于信令数据的轨迹驻留点识别算法研究. 电子与信息学报. 2020(12): 3013-3020 . 本站查看

    Other cited types(18)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (2863) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return