Advanced Search
Volume 40 Issue 12
Nov.  2018
Turn off MathJax
Article Contents
Chichao ZHENG, Lunan ZHANG, Hao WANG, Hu PENG. Plane-wave Compounding with Short-lag Coherence Factor Weighting[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2919-2927. doi: 10.11999/JEIT180120
Citation: Chichao ZHENG, Lunan ZHANG, Hao WANG, Hu PENG. Plane-wave Compounding with Short-lag Coherence Factor Weighting[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2919-2927. doi: 10.11999/JEIT180120

Plane-wave Compounding with Short-lag Coherence Factor Weighting

doi: 10.11999/JEIT180120
Funds:  The National Natural Science Foundation of China (61201060, 61172037)
  • Received Date: 2018-01-29
  • Rev Recd Date: 2018-06-06
  • Available Online: 2018-08-30
  • Publish Date: 2018-12-01
  • The Coherent Plane-Wave Compounding (CPWC) algorithm is based on the recombination of several plane-waves with different steering angles, which can achieve high-quality images with high frame rate. However, CPWC ignores the coherence between the plane-wave imaging results. Coherence Factor (CF) weighted algorithm can effectively improve the imaging contrast and resolution, while it degrades the background speckle quality. A Short-Lag Coherence Factor (SLCF) algorithm for CPWC is proposed. SLCF uses the angular difference parameter to ascertain the order of the coherence factor and calculates the coherence factor for the plane-waves with small angular difference. Then, SLCF is utilized to weight CPWC to obtain the final images. Simulated and experimental results show that SLCF-weighted algorithm can improve the imaging quality in terms of lateral resolution and Contrast Ratio (CR), compared with CPWC. In addition, in comparison with CF and Generalized Coherence Factor (GCF) weighted algorithm, SLCF can achieve better background speckle quality and it has lower computational complexity.
  • loading
  • MONTALDO G, TANTER M, BERCOFF J, et al. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2009, 56(3): 489–506 doi: 10.1109/TUFFC.2009.1067
    BERCOFF J, MONTALDO G, LOUPAS T, et al. Ultrafast compound Doppler imaging: Providing full blood flow characterization[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2011, 58(1): 134–147 doi: 10.1109/TUFFC.2011.1780
    VITI J, VOS H J, DE JONG N, et al. Contrast detection efficacy for plane vs. focused wave transmission[C]. 2014 IEEE International on Ultrasonics Symposium (IUS), Chicago, USA, 2014: 1750–1753.
    SEBASTIEN S, HERVé L, OLIVIER B, et al. Experimental evaluation of spectral-based quantitative ultrasound imaging using plane wave compounding[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2014, 61(11): 1824–1834 doi: 10.1109/TUFFC.2014.006543
    POREE J, GARCIA D, CHAYER B, et al. Non-invasive vascular elastography with plane strain incompressibility assumption using ultrafast coherent compound plane wave imaging[J]. IEEE Transactions on Medical Imaging, 2015, 34(12): 2618–2631 doi: 10.1109/TMI.2015.2450992
    DENARIE B, TANGEN T A, EKROLL I K, et al. Coherent plane wave compounding for very high frame rate ultrasonography of rapidly moving targets[J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1265–1276 doi: 10.1109/TMI.2013.2255310
    ZHAO Jinxin, WANG Yuanyuan, ZENG Xing, et al. Plane wave compounding based on a joint transmitting-receiving adaptive beamformer[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2015, 62(8): 1440–1452 doi: 10.1109/TUFFC.2014.006934
    TOULEMONDE M, BASSET O, TORTOLI P, et al. Thomson’s multitaper approach combined with coherent plane-wave compounding to reduce speckle in ultrasound imaging[J]. Ultrasonics, 2015, 56: 390–398 doi: 10.1016/j.ultras.2014.09.006
    GASSE M, MILLIOZ F, ROUX E, et al. High-quality plane wave compounding using convolutional neural networks[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2017, 64(10): 1637–1639 doi: 10.1109/TUFFC.2017.2736890
    HOLLMAN K W, RIGBY K W, and O'DONNELL M. Coherence factor of speckle from a multi-row probe[C]. IEEE, Ultrasonics Symposium, Caesars Tahoe, USA, 1999: 1257–1260.
    NILSEN C C and HOLM S. Wiener beamforming and the coherence factor in ultrasound imaging[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2010, 57(6): 1329–1346 doi: 10.1109/TUFFC.2010.1553
    YU Mingyue, LI Yang, MA Teng, et al. Intravascular ultrasound imaging with virtual source synthetic aperture (VSSA) focusing and coherence factor weighting[J]. IEEE Transactions on Medical Imaging, 2017, 36(10): 2171–2178 doi: 10.1109/TMI.2017.2723479
    ZHAO Jinxin, WANG Jin, and WANG Yuanyuan. Synthetic aperture ultrasound imaging with classified aperture coherence factors[J]. Journal of Medical Imaging&Health Informatics, 2017, 7(5): 1013–1020 doi: 10.1166/jmihi.2017.21301013
    LI Paichi and LI Menglin. Adaptive imaging using the generalized coherence factor[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2003, 50(2): 128–141.
    WEI G, WANG Y, and YU J. Ultrasound harmonic enhanced imaging using eigenspace-based coherence factor[J]. Ultrasonics, 2016, 72: 106–116 doi: 10.1016/j.ultras.2016.07.017
    WANG Y H and LI P C. SNR-dependent coherence-based adaptive imaging for high-frame-rate ultrasonic and photoacoustic imaging[J]. IEEE Transactions on Ultrasonics Ferroelectrics&Frequency Control, 2014, 61(8): 1419–1432 doi: 10.1109/TUFFC.2014.3051
    LI Y L and DAHL J J. Angular coherence in ultrasound imaging: Theory and applications[J]. Journal of the Acoustical Society of America, 2017, 141(3): 1582–1594 doi: 10.1121/1.4976960
    Plane-wave Imaging challenge in medical ultraSound[OL]. https://www.creatis.insa-lyon.fr/Challenge/IEEE_IUS_2016/, 2016.
    JENSEN J A. Field: A program for simulating ultrasound systems[J]. Medical&Biological Engineering&Computing, 1996, 34(1): 351–353.
    ZHAO Jinxin, WANG Yuanyuan, YU Jinhua, et al. Short-lag spatial coherence ultrasound imaging with adaptive synthetic transmit aperture focusing[J]. Ultrason Imaging, 2017, 39(4): 224–239 doi: 10.1177/0161734616688328
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (2048) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return