Advanced Search
Volume 40 Issue 11
Oct.  2018
Turn off MathJax
Article Contents
LIU Miao, XIA Yuhong, ZHAO Haitao, GUO Liang, SHI Zheng, ZHU Hongbo. Federated Learning Technologies for 6G Industrial Internet of Things: From Requirements, Vision to Challenges, Opportunities[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4335-4353. doi: 10.11999/JEIT240574
Citation: Chunyan YU, Xiaodan XU, Shijun ZHONG. An Improved SSD Model for Saliency Object Detection[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2554-2561. doi: 10.11999/JEIT180118

An Improved SSD Model for Saliency Object Detection

doi: 10.11999/JEIT180118
Funds:  The Major Project in Industry-university Cooperation of Fujian Province (2016H6010), The Natural Science Foundation of Fujian Province (2015J01420), The Guiding Found of Fujian Province (2016Y0060), The Health-Education Joint Project of Fujian Province (WKJ2016-2-26)
  • Received Date: 2018-01-26
  • Rev Recd Date: 2018-07-17
  • Available Online: 2018-07-27
  • Publish Date: 2018-11-01
  • Traditional saliency object detection methods, assuming that there is only one salient object, is not conductive to practical application. Their effects are dependent on saliency threshold. Object detection model provides a kind of new solutions. SSD can accurately detect multi-objects with different scales simultaneously, except for small objects. To overcome this drawback, this paper presents a new multi- saliency objects detection model, DAR-SSD, appending a deconvolution module embedded with an attention residual module. Experiments show that DAR-SSD achieves a higher detection accuracy than SOD. Also, it improves detection performance for multi- saliency objects on small scales, compared with original SSD, and it has an advantage over complicated background, compared with MDF and DCL, which also are deep model based methods.
  • LIU Feng and GLEICHER M. Automatic image retargeting with fisheye-view warping[C]. Annual ACM Symposium on User Interface Software and Technology, Seattle, USA, 2005: 153–162.
    VALENTI R, SEBE N, and GEVERS T. Image saliency by isocentric curvedness and color[C]. IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 2185–2192.
    LUO Ye, YUAN Junsong, XUE Ping, et al. Saliency density maximization for efficient visual objects discovery[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(12): 1822–1834 doi: 10.1109/TCSVT.2011.2147230
    FENG Jie, WEI Yichen, TAO Litian, et al. Salient object detection by composition[C]. IEEE International Conference on IEEE Computer Vision. Barcelona, Spain, 2011: 1028–1035.
    YILDIRIM G and SUSSTRU S. FASA: Fast, accurate, and size-aware salient object detection[C]. Asian Conference on Computer Vision, Singapore, 2014: 514–528.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Object detection networks on convolutional feature maps[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1476–1481 doi: 10.1109/TPAMI.2016.2601099
    REDMON J, DIVVAL S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149 doi: 10.1109/TPAMI.2016.2577031
    ZHANG Jianming, SCLAROFF S, LIN Zhe, et al. Unconstrained salient object detection via proposal subset optimization[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 5733–5742.
    ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2155–2162.
    LIU Wei, ANGULEVO D, ERHAN D, et al. SSD: Single shot multibox detector[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21–37.
    LONG J, SHELHAMER E, DARRELL T, et al. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651 doi: 10.1109/TPAMI.2016.2572683
    CAI Zhaowei, FAN Quanfu, FEIRS R S, et al. A unified multi-scale deep convolutional neural network for fast object detection[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 354–370.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916 doi: 10.1109/TPAMI.2015.2389824
    ZHANG Jianming, MA Shugao, SAMEKI M, et al. Salient object subitizing[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 4045–4054.
    CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569–582 doi: 10.1109/TPAMI.2014.2345401
    YAN Yijun, REN Jinchang, SUN Genyun, et al. Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement[J]. Pattern Recognition, 2018, 7, 9(7): 65–78 doi: 10.1016/j.patcog.2018.02.004
    LI Guanbin and YU Yizhou. Visual saliency detection based on multiscale deep CNN features[J]. IEEE Transaction on Image Processing, 2016, 25(11): 5012–5024 doi: 10.1109/TIP.2016.2602079
    LI Guanbin and YU Yizhou. Deep contrast learning for salient object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 478–487. doi: 10.1109/CVPR.2016.58.
  • Cited by

    Periodical cited type(5)

    1. 王昊,宋骊平. AP聚类和特征划分融合的群结构模型及跟踪算法. 兵器装备工程学报. 2025(02): 228-235 .
    2. 林立鑫,杨真. 隐私信息泄露属性深度跟踪方法仿真. 计算机仿真. 2023(01): 428-432 .
    3. 申屠晗,李凯斌,荣英佼,李彦欣,郭云飞. 一种多传感器自适应量测迭代更新GM-PHD跟踪算法. 电子与信息学报. 2022(12): 4168-4177 . 本站查看
    4. 姜琦,王锐,周超,张天然,胡程. 基于代数图论的修正贝叶斯群目标航迹起始算法. 电子与信息学报. 2021(03): 531-538 . 本站查看
    5. 陈华杰,白浩然. 基于子空间投影的复杂水下环境运动小目标检测前跟踪方法. 电子与信息学报. 2021(03): 826-833 . 本站查看

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(8)

    Article Metrics

    Article views (2413) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return