Advanced Search
Volume 40 Issue 11
Oct.  2018
Turn off MathJax
Article Contents
YANG Lijun, LI Minghang, LU Haitao, GUO Lin. Spoofing Attack Detection Scheme Based on Channel Fingerprint for Millimeter Wave MIMO System[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4228-4234. doi: 10.11999/JEIT220934
Citation: Zhi GUO, Ping SONG, Yi ZHANG, Menglong YAN, Xian SUN, Hao SUN. Aircraft Detection Method Based on Deep Convolutional Neural Network for Remote Sensing Images[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2684-2690. doi: 10.11999/JEIT180117

Aircraft Detection Method Based on Deep Convolutional Neural Network for Remote Sensing Images

doi: 10.11999/JEIT180117
Funds:  The National Natural Science Foundation of China (41501485)
  • Received Date: 2018-01-26
  • Rev Recd Date: 2018-06-06
  • Available Online: 2018-08-30
  • Publish Date: 2018-11-01
  • Aircraft detection is a hot issue in the field of remote sensing image analysis. There exist many problems in current detection methods, such as complex detection procedure, low accuracy in complex background and dense aircraft area. To solve these problems, an end-to-end aircraft detection method named MDSSD is proposed in this paper. Based on Single Shot multibox Detector (SSD), a Densely connected convolutional Network (DenseNet) is used as the base network to extract features for its powerful ability in feature extraction, then an extra sub-network consisting of several feature layers is appended to detect and locate aircrafts. In order to locate aircrafts of various scales more accurately, a series of aspect ratios of default boxes are set to better match aircraft shapes and combine predictions deduced from feature maps of different layers. The method is more brief and efficient than methods that require object proposals, because it eliminates proposal generation completely and encapsulates all computation in a single network. Experiments demonstrate that this approach achieves better performance in many complex scenes.
  • 冯卫东, 孙显, 王宏琦. 基于空间语义模型的高分辨率遥感图像目标检测方法[J]. 电子与信息学报, 2013, 35(10): 2518–2523 doi: 10.3724/SP.J.1146.2013.00033

    FENG Weidong, SUN Xian, and WANG Hongqi. Spatial semantic model based geo-objects detection method for high resolution remote sensing images[J]. Journal of Electronics&Information Technology, 2013, 35(10): 2518–2523 doi: 10.3724/SP.J.1146.2013.00033
    王思雨, 高鑫, 孙皓, 等. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2): 195–203 doi: 10.12000/JR17009

    WANG Siyu, GAO Xin, SUN Hao, et al. An aircraft detection method based on convolutional neural networks in high-resolution SAR images[J]. Journal of Radars, 2017, 6(2): 195–203 doi: 10.12000/JR17009
    SUN Hao, SUN Xian, WANG Hongqi, et al. Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 109–113 doi: 10.1109/LGRS.2011.2161569
    ZHANG Wanceng, SUN Xian, FU Kun, et al. Object detection in high-resolution remote sensing images using rotation invariant parts based model[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 74–78 doi: 10.1109/LGRS.2013.2246538
    ZHAO An, FU Kun, SUN Hian, et al. An effective method based on acf for aircraft detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 744–748 doi: 10.1109/LGRS.2017.2677954
    DIAO Wenhui, SUN Xian, ZHENG Xinwei, et al. Efficient saliency-based object detection in remote sensing images using deep belief networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 137–141 doi: 10.1109/LGRS.2015.2498644
    REN S, HE K, GIRSHICK R, et al. In Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149 doi: 10.1109/TPAMI.2016.2577031
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. Computer Vision and Pattern Recognition, Boston, USA, 2015: 21–37.
    HUANG Gao, LIU Zhuang, and LAURENS van der Maaten. Densely connected convolutional networks[C]. Computer Vision and Pattern Recognition. Hawaii, USA, 2017: 567–576.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 10(1): 123–132.
    ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Object detectors emerge in deep scene CNNs[J]. Computer Science, 2014, 16(2): 1205–1217.
    ERHAN D, SZEGEDY C, TOSHEV A, et al. In Scalable object detection using deep neural networks[C]. Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2155–2162.
    GIRSHICK R. Fast R-CNN[J]. Computer Science, 2015, 4(1): 1440–1448.
    EVERINGHAM M, GOOL L V, WILLIAMS C K I, et al. The pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338 doi: 10.1007/s11263-009-0275-4
  • Cited by

    Periodical cited type(13)

    1. 张亚邦,李佳悦,王满利. 基于HSV空间的煤矿井下低光照图像增强方法. 红外技术. 2024(01): 74-83 .
    2. 孔二伟,张亚邦,李佳悦,王满利. 面向煤矿井下低光照图像的增强方法. 工矿自动化. 2023(04): 62-69+85 .
    3. 孔凡芝,李金龙,吴冬梅. 基于DWT-DCT和Zernike矩的鲁棒视频水印算法. 计算机应用与软件. 2020(04): 309-315 .
    4. 朱浩然,刘云清,张文颖. 基于灰度变换与两尺度分解的夜视图像融合. 电子与信息学报. 2019(03): 640-648 . 本站查看
    5. 朱浩然,刘云清,张文颖. 基于迭代导向滤波与多视觉权重信息的红外与可见光图像融合. 光子学报. 2019(03): 190-200 .
    6. 施文娟,孙彦景,左海维,曹起. 基于视频自然统计特性的无参考移动终端视频质量评价. 电子与信息学报. 2018(01): 143-150 . 本站查看
    7. 朱浩然,刘云清,张文颖. 基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合. 电子与信息学报. 2018(06): 1294-1300 . 本站查看
    8. 邹良涛,蒋刚毅,郁梅,彭宗举,陈芬. 基于张量域感知特征的无参考高动态范围图像质量评价. 计算机辅助设计与图形学学报. 2018(10): 1850-1858 .
    9. 方小艳. 基于清晰度探测与人机交互的图像质量评价算法. 国外电子测量技术. 2017(04): 32-35 .
    10. 张治远. 基于三维图像的运动员起跑动作误差预测仿真. 计算机仿真. 2017(08): 412-416 .
    11. 施文娟,孙彦景,李松,曹起,谭泽富,代妮娜. 基于SSIM的无线视频码率变化聚类识别算法. 计算机工程与设计. 2017(09): 2302-2306+2313 .
    12. 杨陶,田怀文,刘晓敏,邢鹏举,马梦婕,高松松. 基于双截距直方图的Otsu图像分割法. 小型微型计算机系统. 2017(06): 1409-1414 .
    13. 闻新,谢天夏,闫钧华,张寅,黄伟. 改进结构相似度的红外两波段图像目标配准. 仪器仪表学报. 2017(12): 3112-3120 .

    Other cited types(9)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views (4097) PDF downloads(229) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return