Advanced Search
Volume 40 Issue 12
Nov.  2018
Turn off MathJax
Article Contents
Hongyan WANG, Jia ZHENG, Bingnan PEI. A Robust Optical Flow Calculation Method Based on Wavelet[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2945-2953. doi: 10.11999/JEIT180077
Citation: Hongyan WANG, Jia ZHENG, Bingnan PEI. A Robust Optical Flow Calculation Method Based on Wavelet[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2945-2953. doi: 10.11999/JEIT180077

A Robust Optical Flow Calculation Method Based on Wavelet

doi: 10.11999/JEIT180077
Funds:  The National Natural Science Foundation of China (61301258, 61271379), China Postdoctoral Science Foundation (2016M590218)
  • Received Date: 2018-01-19
  • Rev Recd Date: 2018-09-18
  • Available Online: 2018-09-21
  • Publish Date: 2018-12-01
  • Focusing on the issue that the systematic errors lead to poor robustness and low accuracy of optical flow calculation, a robust optical flow calculation method is proposed in this paper, which is based on the wavelet multi-resolution theory. With the multi-resolution characteristics of wavelet, the system error caused by variation of illumination conditions and sensor noise is incorporated into the calculation of optical flow to improve the robustness and estimation accuracy. In what follows, the total least square method is used to solve the over-determined wavelet optical flow equations to obtain the optical flow vector. As compared to the traditional Lucas-Kanade approach, Horn-Schunck method and optical flow estimation in omnidirectional images using wavelet approach, simulation results show that the proposed algorithm can significantly improve the accuracy of optical flow estimation and the robustness of the optical flow field.
  • loading
  • BLESER G and HENDEBY G. Using optical flow as lightweight SLAM alternative[C]. International Symposium on Mixed and Augmented Reality, Orlando, USA, 2009, 175–176. doi: 10.1109/ISMAR.2009.5336475.
    ZHANG Congxuan, Ge Liyue, CHEN Zhen, et al. Guided filtering: Toward edge-preserving for optical flow[J]. IEEE Access, 2018, 6: 26958–26970 doi: 10.1109/ACCESS.2018.2831920
    GOPPERT J, YANTEK S, and HWANG I. Invariant Kalman filter application to optical flow based visual odometry for UAVs[C]. IEEE Ninth International Conference on Ubiquitous and Future Networks, Milan, Italy, 2017: 99–104. doi: 10.1109/ICUFN.2017.7993755.
    PASTOR-MORENO D, SHIN H S, and WALDOCK A. Optical flow localisation and appearance mapping (OFLAAM) for long-term navigation[C]. IEEE International Conference on Unmanned Aircraft Systems, Colorado, USA, 2015: 980–988. doi: 10.1109/ICUAS.2015.7152387.
    CHAMORRO-MARTINEZ J and FERNANDEZ-VALDIVIA J. A new approach to motion pattern recognition and its application to optical flow estimation[J]. IEEE Transactions on Systems Man&Cybernetics Part C, 2006, 37(1): 39–51 doi: 10.1109/TSMCC.2006.876044
    HORN B K P and SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1/3): 185–203 doi: 10.1016/0004-3702(81)90024-2
    LUCAS B D and KANADE T. An iterative image registration technique with an application to stereo vision[C]. International Joint Conference on Artificial Intelligence, Vancouver, Canada, 1981: 674–679.
    DRULEA M and NEDEVSCHI S. Total variation regularization of local-global optical flow[C]. IEEE International Conference on Intelligent Transportation Systems, Washington, DC, USA, 2011: 318–323. doi: 10.1109/ITSC.2011.6082986.
    NIU Yan, XU Zhiwen, CHE Xiangjiu, et al. Dynamically removing false features in pyramidal lucas-kanade registration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3535–3544 doi: 10.1109/TIP.2014.2331140
    田天, 周兵, 李波, 等. 基于解析小波的光流计算方法[J]. 北京航空航天大学学报, 2003, 29(6): 548–551 doi: 10.13700/j.bh.1001-5965.2003.06.019

    TIAN Tian, ZHOU Bing, LI Bo, et al. Optical flow computation based on analytic wavelet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(6): 548–551 doi: 10.13700/j.bh.1001-5965.2003.06.019
    MAGAREY J and KINGSBURY N. Motion estimation using a complex-valued wavelet transform[J]. IEEE Transactions on Signal Processing, 2002, 46(4): 1069–1084 doi: 10.1109/78.668557
    WU Yute, KANADE T, COHN J, et al. Optical flow estimation using wavelet motion model[C]. IEEE International Conference on Computer Vision, Bombay, India, 1998: 992–998. doi: 10.1109/ICCV.1998.710837.
    项学智, 赵春晖. 形态梯度恒常的复值小波光流求解[J]. 哈尔滨工程大学学报, 2008, 29(8): 872–876 doi: 10.3969/j.issn.1006-7043.2008.08.020

    XIANG Xuezhi and ZHAO Chunhui. An estimation of complex wavelet optical flow with invariant morphological gradient[J]. Journal of Harbin Engineering University, 2008, 29(8): 872–876 doi: 10.3969/j.issn.1006-7043.2008.08.020
    DEMONCEAUX C and KACHI-AKKOUCHE D. Optical flow estimation in omnidirectional images using wavelet approach[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Madison, USA, 2003: 71–76. doi: 10.1109/CVPRW.2003.10080.
    SCHAFFRIN B and FELUS Y A. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms[J]. Journal of Geodesy, 2008, 82(6): 373–383 doi: 10.1007/s00190-007-0186-5
    NIAZ M T, IMDAD F, KIM S, et al. Total least-square-based receiver for asymmetrically clipped optical-orthogonal frequency divisional multiplexing visible light communication system[J]. IET Optoelectronics, 2017, 11(4): 129–133 doi: 10.1049/iet-opt.2015.0133
    ARTYUSHENKO V M and VOLOVACH V I. The effect of multiplicative noise on probability density function of signal and additive noise[C]. IEEE Workshop on Electronic and Networking Technologies, Moscow, Russia, 2018: 1–5. doi: 10.1109/MWENT.2018.8337270.
    DATESMAN A. Shot noise in radiobiological systems[J]. Journal of Environmental Radioactivity, 2016, 164: 365–368 doi: 10.1016/j.jenvrad.2016.06.017
    CELLA G. Thermal noise correlations and subtraction[J]. Physics Letters A, 2017, 382: 2269–2274 doi: 10.1016/j.physleta.2017.06.026
    SHOU Guofa, XIA Ling, JIANG Mingfeng, et al. Truncated total least squares: A new regularization method for the solution of ECG inverse problems[J]. IEEE Transactions on Bio-medical Engineering, 2008, 55(4): 1327–1335 doi: 10.1109/TBME.2007.912404
    曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时差到达频差无源定位算法[J]. 电子与信息学报, 2014, 36(5): 1075–1081 doi: 10.3724/SP.J.1146.2013.01019

    QU Fuyong and MENG Xiangwei. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm[J]. Journal of Electronics&Information Technology, 2014, 36(5): 1075–1081 doi: 10.3724/SP.J.1146.2013.01019
    BARRON J L, FLEET D J, and CHEMIN S. Performance of optical flow techniques[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Champaign, USA, 2002: 236–242. doi: 10.1109/CVPR.1992.223269.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1408) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return