Citation: | Hongyan WANG, Jia ZHENG, Bingnan PEI. A Robust Optical Flow Calculation Method Based on Wavelet[J]. Journal of Electronics & Information Technology, 2018, 40(12): 2945-2953. doi: 10.11999/JEIT180077 |
BLESER G and HENDEBY G. Using optical flow as lightweight SLAM alternative[C]. International Symposium on Mixed and Augmented Reality, Orlando, USA, 2009, 175–176. doi: 10.1109/ISMAR.2009.5336475.
|
ZHANG Congxuan, Ge Liyue, CHEN Zhen, et al. Guided filtering: Toward edge-preserving for optical flow[J]. IEEE Access, 2018, 6: 26958–26970 doi: 10.1109/ACCESS.2018.2831920
|
GOPPERT J, YANTEK S, and HWANG I. Invariant Kalman filter application to optical flow based visual odometry for UAVs[C]. IEEE Ninth International Conference on Ubiquitous and Future Networks, Milan, Italy, 2017: 99–104. doi: 10.1109/ICUFN.2017.7993755.
|
PASTOR-MORENO D, SHIN H S, and WALDOCK A. Optical flow localisation and appearance mapping (OFLAAM) for long-term navigation[C]. IEEE International Conference on Unmanned Aircraft Systems, Colorado, USA, 2015: 980–988. doi: 10.1109/ICUAS.2015.7152387.
|
CHAMORRO-MARTINEZ J and FERNANDEZ-VALDIVIA J. A new approach to motion pattern recognition and its application to optical flow estimation[J]. IEEE Transactions on Systems Man&Cybernetics Part C, 2006, 37(1): 39–51 doi: 10.1109/TSMCC.2006.876044
|
HORN B K P and SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1/3): 185–203 doi: 10.1016/0004-3702(81)90024-2
|
LUCAS B D and KANADE T. An iterative image registration technique with an application to stereo vision[C]. International Joint Conference on Artificial Intelligence, Vancouver, Canada, 1981: 674–679.
|
DRULEA M and NEDEVSCHI S. Total variation regularization of local-global optical flow[C]. IEEE International Conference on Intelligent Transportation Systems, Washington, DC, USA, 2011: 318–323. doi: 10.1109/ITSC.2011.6082986.
|
NIU Yan, XU Zhiwen, CHE Xiangjiu, et al. Dynamically removing false features in pyramidal lucas-kanade registration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3535–3544 doi: 10.1109/TIP.2014.2331140
|
田天, 周兵, 李波, 等. 基于解析小波的光流计算方法[J]. 北京航空航天大学学报, 2003, 29(6): 548–551 doi: 10.13700/j.bh.1001-5965.2003.06.019
TIAN Tian, ZHOU Bing, LI Bo, et al. Optical flow computation based on analytic wavelet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(6): 548–551 doi: 10.13700/j.bh.1001-5965.2003.06.019
|
MAGAREY J and KINGSBURY N. Motion estimation using a complex-valued wavelet transform[J]. IEEE Transactions on Signal Processing, 2002, 46(4): 1069–1084 doi: 10.1109/78.668557
|
WU Yute, KANADE T, COHN J, et al. Optical flow estimation using wavelet motion model[C]. IEEE International Conference on Computer Vision, Bombay, India, 1998: 992–998. doi: 10.1109/ICCV.1998.710837.
|
项学智, 赵春晖. 形态梯度恒常的复值小波光流求解[J]. 哈尔滨工程大学学报, 2008, 29(8): 872–876 doi: 10.3969/j.issn.1006-7043.2008.08.020
XIANG Xuezhi and ZHAO Chunhui. An estimation of complex wavelet optical flow with invariant morphological gradient[J]. Journal of Harbin Engineering University, 2008, 29(8): 872–876 doi: 10.3969/j.issn.1006-7043.2008.08.020
|
DEMONCEAUX C and KACHI-AKKOUCHE D. Optical flow estimation in omnidirectional images using wavelet approach[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Madison, USA, 2003: 71–76. doi: 10.1109/CVPRW.2003.10080.
|
SCHAFFRIN B and FELUS Y A. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms[J]. Journal of Geodesy, 2008, 82(6): 373–383 doi: 10.1007/s00190-007-0186-5
|
NIAZ M T, IMDAD F, KIM S, et al. Total least-square-based receiver for asymmetrically clipped optical-orthogonal frequency divisional multiplexing visible light communication system[J]. IET Optoelectronics, 2017, 11(4): 129–133 doi: 10.1049/iet-opt.2015.0133
|
ARTYUSHENKO V M and VOLOVACH V I. The effect of multiplicative noise on probability density function of signal and additive noise[C]. IEEE Workshop on Electronic and Networking Technologies, Moscow, Russia, 2018: 1–5. doi: 10.1109/MWENT.2018.8337270.
|
DATESMAN A. Shot noise in radiobiological systems[J]. Journal of Environmental Radioactivity, 2016, 164: 365–368 doi: 10.1016/j.jenvrad.2016.06.017
|
CELLA G. Thermal noise correlations and subtraction[J]. Physics Letters A, 2017, 382: 2269–2274 doi: 10.1016/j.physleta.2017.06.026
|
SHOU Guofa, XIA Ling, JIANG Mingfeng, et al. Truncated total least squares: A new regularization method for the solution of ECG inverse problems[J]. IEEE Transactions on Bio-medical Engineering, 2008, 55(4): 1327–1335 doi: 10.1109/TBME.2007.912404
|
曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时差到达频差无源定位算法[J]. 电子与信息学报, 2014, 36(5): 1075–1081 doi: 10.3724/SP.J.1146.2013.01019
QU Fuyong and MENG Xiangwei. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm[J]. Journal of Electronics&Information Technology, 2014, 36(5): 1075–1081 doi: 10.3724/SP.J.1146.2013.01019
|
BARRON J L, FLEET D J, and CHEMIN S. Performance of optical flow techniques[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Champaign, USA, 2002: 236–242. doi: 10.1109/CVPR.1992.223269.
|