Advanced Search
Volume 40 Issue 9
Aug.  2018
Turn off MathJax
Article Contents
Kai ZHANG, Yao TIAN, Yunpeng XIE, Yi LIU. Joint Symbol Detection Algorithm for Multi-antenna Signals over Flat-fading Channels Based on Variational Bayes[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2096-2104. doi: 10.11999/JEIT180073
Citation: Kai ZHANG, Yao TIAN, Yunpeng XIE, Yi LIU. Joint Symbol Detection Algorithm for Multi-antenna Signals over Flat-fading Channels Based on Variational Bayes[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2096-2104. doi: 10.11999/JEIT180073

Joint Symbol Detection Algorithm for Multi-antenna Signals over Flat-fading Channels Based on Variational Bayes

doi: 10.11999/JEIT180073
Funds:  The National Natural Science Foundation of China (61501517)
  • Received Date: 2018-01-19
  • Rev Recd Date: 2018-06-27
  • Available Online: 2018-07-12
  • Publish Date: 2018-09-01
  • For the issue of joint parameter estimation and symbol detection for multi-antenna signals with channel parameters difference over flat-fading channels, a new joint processing scheme is proposed based on the Variational Bayes (VB) method. The proposed scheme uses directly multiple received signals for the estimation of information symbols, restraining the information loss in conventional decoupled scheme of signals combination and demodulation. The problem is modeled as the joint Maximum A Posteriori (MAP) estimation of information symbols, time-delays, complex channel gains, and noise powers, given multiple observations, and approximately solved by means of VB approach. Based on the criterion of minimum relative entropy, analytical-form of the approximate distributions, i.e., variational distributions, for all unknown parameters are derived. There is no need to determine accurate point estimates of the parameters. Instead, the proposed scheme proceeds iteratively by alternating between the variational distributions of channel parameters and the information symbols. Simulation results show that the proposed joint processing scheme has significant performance improvements in comparison with conventional decoupled or partly joint processing schemes especially with large array sizes and short signal lengths.
  • loading
  • ZHANG Kai, YU Hongyi, HU Yunpeng, et al. ML-based iterative approach for blind frequency domain equalization and combination over sparse channels[J]. IEEE Communications Letters, 2018, 22(1): 193–196 doi: 10.1109/LCOMM.2017.2672963
    张凯, 于宏毅, 胡赟鹏, 等. 基于EM-SBL迭代的稀疏SIMO信道频域盲均衡算法[J]. 电子学报, 2018, 46(2): 372–380 doi: 10.3969/j.issn.0372-2112.2018.02.016

    ZHANG Kai, YU Hongyi, HU Yunpeng, et al. Blind frequency-domain equalization for sparse SIMO channels based on iterative EM-SBL algorithm[J]. Acta Electronica Sinica, 2018, 46(2): 372–380 doi: 10.3969/j.issn.0372-2112.2018.02.016
    YAO Kai, REED C, HUDSON R E, et al. Blind beamforming on a randomly distributed sensor array system[J]. IEEE Journal on Selected Areas in Communications, 1998, 16(8): 1555–1567 doi: 10.1109/49.730461
    GE Xiaohu, TU Song, MAO Guoqiang, et al. 5G ultra-dense cellular networks[J]. IEEE Wireless Communications, 2016, 23(1): 72–79 doi: 10.1109/MWC.2016.7422408
    WANG Peng, MAO Guoqiang, LIN Zihuai, et al. Performance analysis of raptor codes under maximum likelihood decoding[J]. IEEE Transactions on Communications, 2016, 64(3): 906–917 doi: 10.1109/TCOMM.2016.2522403
    ZI Ran, GE Xiaohu, THOMPSON J, et al. Energy efficiency optimization of 5G radio frequency chain systems[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4): 758–771 doi: 10.1109/JSAC.2016.2544579
    GE Xiaohu, ZI Ran, XIONG Xusheng, et al. Millimeter wave communications with OAM-SM scheme for future mobile networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(9): 2163–2177 doi: 10.1109/JSAC.2017.2720238
    NATARAJAN S, BARBOSA D, BARRACA J P, et al. SKA Telescope Manager (TM): Status and architecture overview[C]. 2016 SPIE Astronomical Telescopes+Instrumentation. International Society for Optics and Photonics, Edinburgh, UK, 2016: 991302-991302-10.
    张凯, 于宏毅, 沈彩耀, 等. 随机布局多天线信号联合时差估计Cramer-Rao下界[J]. 信号处理, 2013, 29(4): 497–502

    ZHANG Kai, YU Hongyi, SHEN Caiyao, et al. Cramer-Rao lower bound for joint time delay estimation in a randomly distributed antenna array[J]. Journal of Signal Processing, 2013, 29(4): 497–502
    LEE C H, CHEUNG K M, and VILNROTTER V A. Fast eigen-based signal combining algorithms for large antenna arrays[C]. 2003 IEEE Aerospace Conference. Big Sky, USA, 2003: 1123–1129.
    STEIN S. Algorithm for ambiguity function processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3): 588–599 doi: 10.1109/TASSP.1981.1163621
    漆雪梅, 沈彩耀, 张效义. SIMO 信道中基于奇异值分解的盲信噪比估计算法[J]. 信号处理, 2011, 27(4): 588–599

    QI Xuemei, SHEN Caiyao, and ZHANG Xiaoyi. A blind SNR estimation algorithm based on SVD over SIMO channels[J]. Journal of Signal Processing, 2011, 27(4): 588–599
    SHEN Caiyao and YU Hongyi. Time-delay alignment technique for a randomly distributed sensor array[J]. IET Communications, 2011, 5(8): 1068–1072 doi: 10.1049/iet-com.2010.0671
    CHUGG K M and POLYDOROS A. MLSE for an unknown channel. I. optimality considerations[J]. IEEE Transactions on Communications, 1996, 44(7): 836–846 doi: 10.1109/26.508303
    CLARK M V, GREENSTEIN L J, KENNEDY W K, et al. Optimum linear diversity receivers for mobile communications[J]. IEEE Transactions on Vehicular Technology, 1994, 43(1): 47–56 doi: 10.1109/25.282265
    WIPF D. Don’t relax: Why non-convex algorithms are often needed for sparse estimation?[R]. ICCV2013, Sydney Australia.
    BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006: 461–517.
    THEMELIS K E, RONTOGIANNIS A A, and KOUTROUMBAS K D. A variational Bayes framework for sparse adaptive estimation[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4723–4736 doi: 10.1109/TSP.2014.2338839
    NOELS N, LOTTICI V, DEJONGHE A, et al. A theoretical framework for soft-information-based synchronization in iterative (turbo) receivers[J]. EURASIP Journal on Wireless Communications and Networking, 2005, 2005(2): 117–129 doi: 10.1155/WCN.2005.117
    IJAZ A, AWOSEYILA A B, and EVANS B G. Improved SNR estimation for BPSK and QPSK signals[J]. Electronics Letters, 2009, 45(16): 858–859 doi: 10.1049/el.2009.1759
    SHEN Zhixiang, YU Hongyi, HU Yunpeng, et al. Joint symbol detection for multi-receiver without signal synchronization and array alignment[J]. IEEE Communications Letters, 2014, 18(10): 1755–1758 doi: 10.1109/LCOMM.2014.2352644
    ANDERSIN M, MANDAYAM N B, and YATES R D. Subspace based estimation of the signal to interference ratio for TDMA cellular systems[C]. 1996 IEEE Vehicular Technology Conference. Atlanta, USA, 1996: 1155–1159.
    TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211–244 doi: 10.1162/15324430152748236
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1867) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return