Advanced Search
Volume 40 Issue 10
Sep.  2018
Turn off MathJax
Article Contents
Changqiang HUANG, Kexin ZHAO, Bangjie HAN, Zhenglei WEI. Maneuvering Decision-making Method of UAV Based on Approximate Dynamic Programming[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2447-2452. doi: 10.11999/JEIT180068
Citation: Changqiang HUANG, Kexin ZHAO, Bangjie HAN, Zhenglei WEI. Maneuvering Decision-making Method of UAV Based on Approximate Dynamic Programming[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2447-2452. doi: 10.11999/JEIT180068

Maneuvering Decision-making Method of UAV Based on Approximate Dynamic Programming

doi: 10.11999/JEIT180068
Funds:  The National Natural Science Foundation of China (61601505), The Aviation Science Foundation Project (20155196022)
  • Received Date: 2018-01-17
  • Rev Recd Date: 2018-06-20
  • Available Online: 2018-07-30
  • Publish Date: 2018-10-01
  • To solve the problem of dimension disaster when solving air combat maneuvering decision-making by dynamic programming, a swarm intelligence maneuvering decision-making method based on the approximate dynamic programming is proposed. Firstly, the Unmanned Aerial Vehicle (UAV) dynamic model and advantage functions of situation are established. On this basis, air combat process is divided into several stages according to dynamic programming thought. In order to reduce the search space, an Artificial Potential Field (APF) Guiding Ant Lion Optimizer (ALO) approximate optimal control amount is adopted in each programming stage. Finally, by comparing expert system, the experiment result indicates that the high dynamic and real-time air combat maneuvering decision can be solved by the proposed method effectively.
  • loading
  • VIRTANEN K and RAIVIO T. Modeling pilot’s sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2012, 27(4): 665–677 doi: 10.2514/1.11167
    CASBEER D W, GARCIA E, and PACHTER M. The target differential game with two defenders[J]. Journal of Intelligent and Robotic Systems, 2017, 89: 87–106 doi: 10.1007/s10846-017-0563-0
    SEO J and KIM Y. Differential geometry based collision avoidance guidance for multiple UAVs[J]. IFAC Proceedings Volumes, 2013, 46(19): 113–118 doi: 10.3182/20130902-5-DE-2040.00061
    傅莉, 王晓光. 无人战机近距空战微分对策建模研究[J]. 兵工学报, 2012, 10(10): 1210–1216

    FU Li and WANG Xiaoguang. Research on close air combat modeling of differential games for unmanned combat air vehicles[J].Acta Armamentarii, 2012, 10(10): 1210–1216
    傅莉, 谢怀福. 基于滚动时域的无人机空战决策专家系统[J]. 北京航空航天大学学报, 2015, 41(11): 1994–1999 doi: 10.13700/j.bn.1001-5965.2014.0756

    FU Li and XIE Huaifu. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1994–1999 doi: 10.13700/j.bn.1001-5965.2014.0756
    XIAO Lizhi, SUN Dexiang, and LIU Yuwei. A combined method based on expert system and BP neural network for UAV systems fault diagnosis[C]. 2010 International Conference on Artificial Intelligence and Computational Intelligence, Piscataway, USA, 2010: 3–6. doi: 10.1109/AICI.2010.242.
    张涛, 于雷. 基于混合算法的空战机动决策[J]. 系统工程与电子技术, 2013, 35(7): 1445–1450

    ZHANG Tao and YU Lei. Decision-making for air combat maneuvering based on hybrid algorithm[J]. Systems Engineering and Electronics, 2013, 35(7): 1445–1450
    NICHOLAS E, DAVID C, COREY S, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1): 1–7 doi: 10.4172/2167-0374.1000144
    周思羽, 吴文海, 孔繁峨, 等. 基于随机决策准则的改进多级影响图机动决策方法[J]. 北京理工大学学报, 2013, 33(3): 296–301 doi: 10.3969/j.issn.1001-0645.2013.03.017

    ZHOU Siyu, WU Wenhai, and KONG Fane, et al. Improved multistage influence diagram maneuvering decision method based on stochastic decision criterions[J]. Transaction of Beijing Institute of Technology, 2013, 33(3): 296–301 doi: 10.3969/j.issn.1001-0645.2013.03.017
    KAI V and RAIVIO T. An influence diagram approach to one on one air combat[J]. International Symposium on Differential Games and Applications, 2002, 14(26): 8–11 doi: 10.3182/2002-0902-5-2300.00061
    MCGREW J S and HOW J P. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5): 1641–1654 doi: 10.2514/1.46815
    MESMER B L and BLOEBAUM C L. Modeling decision and game theory based pedestrian velocity vector decisions with interacting individuals[J]. Safety Science, 2016, 87: 116–130 doi: 10.1016/j.ssci.2016.03.018
    BREITNER M H, PESCH H J, and GRIMM W. Complex differential games of pursuit- evasion type with stateconstraints, part2: Numerical computation of optimal open-loop strategies[J]. Journal of Optimization Theory and Applications, 1993, 78(3): 419–441 doi: 10.1007/BF00939876
    DIETTERICH T G. Hierarchical reinforcement learning with the MAXQ value function decomposition[J]. Journal of Artificial Intelligence Research, 1999, 13(1): 227–303 doi: 10.3685/CS1999-03
    ANDREY P and TAL S. Cooperative differential games strategies for active aircraft protection from a homing missile[J]. Journal of Guidance, Control, and Dynamics, 2015, 34(3): 761–773 doi: 10.2514/1.51611
    张煜, 王楠, 陈璟. 空地多目标攻击中制导炸弹可投放区计算研究[J]. 兵工学报, 2011, 32(12): 1474–1480

    ZHANG Yu, WANG Nan, and CHEN Jing. Research on launch acceptable region for guided boms in air to ground multi target attack[J]. Acta Armamentarii, 2011, 32(12): 1474–1480
    MIRJALILI S. The ant lion optimizer[J]. Advance Engineering Software, 2015, 83(C): 80–98 doi: 10.1016/j.advengsoft.2015.01.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (2177) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return