Advanced Search
Volume 40 Issue 11
Oct.  2018
Turn off MathJax
Article Contents
Xiaode LÜ, Jingmao YANG, Qi YUE, Hanliang ZHANG. Airborne Bistatic Radar Clutter Suppression Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2651-2658. doi: 10.11999/JEIT180062
Citation: Xiaode LÜ, Jingmao YANG, Qi YUE, Hanliang ZHANG. Airborne Bistatic Radar Clutter Suppression Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2651-2658. doi: 10.11999/JEIT180062

Airborne Bistatic Radar Clutter Suppression Based on Sparse Bayesian Learning

doi: 10.11999/JEIT180062
  • Received Date: 2018-01-16
  • Rev Recd Date: 2018-08-13
  • Available Online: 2018-08-22
  • Publish Date: 2018-11-01
  • Clutter of airborne bistatic radar is related to configuration and has serious range dependence characteristic, therefore the clutter ridge is complex and variable, and few Independent and Identically Distributed (IID) samples exist. As the result, the traditional Space-Time Adaptive Processing (STAP) has a degraded suppression performance for airborne bistatic radar clutter. Based on the sparsity of airborne radar clutter in the angle-Doppler domain and the advantages of Sparse Bayesian Learning (SBL) in sparse signal reconstruction, SBL algorithm is applied to the more complex airborne bistatic radar with both transmitter and receiver moving. The method can estimate the Clutter Covariance Matrix (CCM) of the unit under test with very few training samples, then perform space-time adaptive processing. Since the method does not need independent and identically distributed samples, it has better performance of clutter suppression in the airborne bistatic radar with both transmitter and receiver moving. Simulation results verify the effectiveness of the algorithm.
  • loading
  • WILLIS N J and GRIFFITHS H D. Advances in bistatic radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2008, 23(7): 46–46 doi: 10.1109/MAES.2008.4579292
    段锐. 机载双基地雷达杂波仿真与抑制技术研究[D]. [博士论文], 电子科技大学, 2009.

    DUAN Rui. The study on airborne bistatic radar clutter simulation and cancellation techniques[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2009.
    WARD J. Space-time adaptive processing for airborne radar[C]. International Conference on Acoustics, Speech, and Signal Processing, Detroit, MI, USA, 1995: 2809–2812. doi: 10.1109/ICASSP.1995.479429.
    KLEMM R. Principles of space-time adaptive processing[J]. Electronics&Communication Engineering Journal, 2002, 14(6): 295–296.
    WICKS M C, RANGASWAMY M, ADVE R, et al. Space-time adaptive processing: A knowledge-based perspective for airborne radar[J]. IEEE Signal Processing Magazine, 2006, 23(1): 51–65 doi: 10.1109/MSP.2006.1593337
    KLEMM R. Space-time adaptive processing: principles and applications[J]. Electronics&Communications Engineering Journal, 1999, 11(4): 172–172.
    KREYENKAMP O and KLEMM R. Doppler compensation in forward-looking STAP radar[J]. IEE Proceedings - Radar,Sonar and Navigation, 2001, 148(5): 253–258 doi: 10.1049/ip-rsn:20010557
    HIMED B, ZHANG Yinmin, and HAJJARI A. STAP with angle-doppler compensation for bistatic airborne radars[C]. Proceedings of the 2002 IEEE Radar Conference, Long Beach, CA, USA, 2002: 311–317. doi: 10.1109/NRC.2002.999737.
    HAYWARD S D. Adaptive beamforming for rapidly moving arrays[C]. Proceedings of International Radar Conference, Beijing, China, 1996: 480–483. doi: 10.1109/ICR.1996.574504.
    REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863 doi: 10.1109/TAES.1974.307893
    WANG H and CAI L. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 660–670 doi: 10.1109/7.303737
    孙英. 机载雷达空时自适应处理技术研究[D]. [硕士论文], 南京邮电大学, 2013.

    SUN Ying. Study on space-time adaptive pprocessing technology for airborne radar[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2013.
    张永顺, 冯为可, 赵杰, 等. 时变加权的机载双基雷达降维空时自适应处理[J]. 电波科学学报, 2015, 30(1): 194–200 doi: 10.13443/j.cjors.2014040701

    ZHANG Yongshun, FENG Kewei, ZHAO Jie, et al. A dimensional-reduced STAP for airborne bistatic radar based on time-varying weighting techniques[J]. Chinese Journal of Radio Science, 2015, 30(1): 194–200 doi: 10.13443/j.cjors.2014040701
    WU Q, ZHANG Y D, AMIN M G, et al. Complex multitask bayesian compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 3375–3379. doi: 10.1109/ICASSP.2014.6854226.
    POLI L, OLIVERI G, VIANI F, et al. MT-BCS-based microwave imaging approach through minimum-norm current expansion[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4722–4732 doi: 10.1109/TAP.2013.2265254
    ZHANG Yimin and HIMED B. Space-time adaptive processing in bistatic passive radar exploiting complex bayesian learning[C]. 2014 IEEE Radar Conference, Cincinnati, OH, 2014: 0923–0926. doi: 10.1109/RADAR.2014.6875723.
    WU Qisong, ZHANG Yimin, AMIN M G, et al. Space-time adaptive processing in bistatic passive radar exploiting group sparsity[C]. 2015 IEEE Radar Conference, Arlington, VA, UAS, 2015: 0886–0890. doi: 10.1109/RADAR.2015.7131120.
    CARLIN M, ROCCA P, OLIVERI G, et al. Directions-of-arrival estimation through bayesian compressive sensing strategies[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3828–3838 doi: 10.1109/TAP.2013.2256093
    OLIVERI G, ROCCA P, and MASSA A. A bayesian-compressive-sampling-based inversion for imaging sparse scatterers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3993–4006 doi: 10.1109/TGRS.2011.2128329
    OLIVERI G, CARLIN M, and MASSA A. Complex-weight sparse linear array synthesis by bayesian compressive sampling[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2309–2326 doi: 10.1109/TAP.2012.2189742
    YANG Pengcheng, LÜ Xiaode, CHAI Zhihai, et al. Clutter cancellation along the clutter ridge for airborne passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 951–955 doi: 10.1109/LGRS.2017.2689076
    SUN Ke, ZHANG Hao, LI Gang, et al. A novel STAP algorithm using sparse recovery technique[C]. IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 336–339. doi: 10.1109/IGARSS.2009.5417664.
    WANG Lei, LIU Yimin, MA Zeqiang, et al. A novel STAP method based on structured sparse recovery of clutter spectrum[C]. 2015 IEEE Radar Conference, Arlington, VA, USA, 2015: 0561–0565. doi: 10.1109/RADAR.2015.7131061.
    MACKAY D J C. Bayesian Interpolation[J]. Neural Computation, 1992, 4(3): 415–447 doi: 10.1162/neco.1992.4.3.415
    赵军, 田斌, 朱岱寅. 基于PAST处理的机载双基雷达自适应角度-多普勒补偿算法[J]. 雷达学报, 2017, 6(6): 594–601 doi: 10.12000/JR17053

    ZHAO Jun, TIAN Bin, and ZHU Daiyin. Adaptive angle-Doppler compensation method for airborne bistatic radar based on PAST[J]. Journal of Radars, 2017, 6(6): 594–601 doi: 10.12000/JR17053
    WU Qisong, ZHANG Yimin, AMIN M G, et al. Space-time adaptive processing and motion parameter estimation in multistatic passive radar using sparse bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 944–957 doi: 10.1109/TGRS.2015.2470518
    谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6(6): 575–586 doi: 10.12000/JR17073

    XIE Wenchong, DUAN Keqing, and WANG Yongliang. Space-time adaptive processing technique for airborne radar:an overview of its development and prospects[J]. Journal of Radars, 2017, 6(6): 575–586 doi: 10.12000/JR17073
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (2083) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return